#### Simulation of Auction Mechanism Model for Energy-Efficient High Performance Computing

#### Kishwar Ahmed, Samia Tasnim\*, and Kazutomo Yoshii\*\*

University of South Carolina Beaufort

\*Florida A&M University

\*\*Argonne National Laboratory







## Outline

- Background
- Energy-efficient auction mechanism model
- Mechanism model simulation
- Conclusions

## High Performance Computing (HPC) System



Sierra supercomputer @LLNL in Livermore, CA

#### HPC Cloud











#### HPC is Power-Hungry



#### HPC is Energy-Costly

#### **HPC cost distribution**



#### Lifelong energy cost $\approx$ investment cost

Source: "Total Cost of Ownership in High Performance Computing. HPC data center cost considerations: investment, operation and maintenance." in SoSE 2014

## The Question

# How to reduce energy cost of HPC systems, while rewarding HPC users for their participation?

# Our Solution

#### **1** Energy-efficient auction mechanism model

- Energy reduction based on DVFS
- Auction mechanism to reward HPC users



#### **Mechanism model simulation**

• Based on parallel discrete-event simulation

# Outline

• Background

#### Energy-efficient auction mechanism model

- Mechanism model simulation
- Conclusions

# **Energy-Efficient Auction Mechanism Model**

- Resource allocation model
  - Exploiting dynamic voltage frequency scaling (DVFS)
- Auction mechanism model
  - Bid determination
  - Winning bidder determination
  - Price determination

#### **Resource Allocation Model**

Reduce energy consumption through DVFS

$$e_{i} = n_{i} \cdot p(f_{max}) \cdot t_{s} \qquad e_{i}' = n_{i} \cdot p(f_{i}') \cdot t_{s}$$
$$\Delta e_{i} = e_{i} - e_{i}'$$
$$\Delta t_{i} = 100 \cdot [t(f_{max}) - t(f_{i}')] / [t(f_{max})]$$

# Enable Users' Participation

#### HPC users incur application performance loss

• How to ensure their participation?



HPC users rewarded based on a **VCG-based auction mechanism** model

## VCG-Based Auction Model

- Vickery-Clarke-Groove (VCG) mechanism
  - A sealed-bid auction mechanism
  - Truth-telling is a dominant strategy
  - Participants are rewarded for truthful participation
- Two stages
  - HPC users submit their energy reduction bid
  - HPC operator determines winning bidders and actual payment

## An Example Scenario



# Determining Bids

Inconvenience cost

 $\mathbf{c}_i = \boldsymbol{\beta} \cdot \Delta t_i$ 

- $\beta$  converts time change to monetary value
- E.g., 0.0044\$/hour at Rice University HPC cluster
- Bid determined by user *i*

$$\mathbf{b}_i = \tau_i \cdot c_i$$

- $\tau_i$  is a truthfulness parameter
- By default value is 1 (i.e., no cheating)

# Determining Winning Bidders

Operator solves the following optimization to determine the winning bidders



## **Determining Price**

- Payment of bidder *i* (*p<sub>i</sub>*) is obtained as
  - Optimal welfare (for the other users) if user *i* was not participating
  - minus welfare of the other players from the chosen outcome
- Mathematically,

$$p_{i} = C_{B-b_{i}}^{*} - [C_{B}^{*} - b_{i}]$$
$$= b_{i} + C_{B-b_{i}}^{*} - C_{B}^{*}.$$

 Where C<sub>B</sub><sup>\*</sup> denotes total incentive cost based on the optimization process for the bid set B = {b<sub>1</sub>, b<sub>2</sub>, ..., b<sub>N</sub>}

## Outline

- Background
- Energy-efficient auction mechanism model
- Mechanism model simulation
- Conclusions

# Scheduling Simulator



# Simulus: Parallel Discrete Event Simulator

- Discrete-event simulator in Python
- Open-source: <u>https://simulus.readthedocs.io/en/latest/index.html</u>
- Supports parallel and distributed simulation
- Several advanced features to ease modeling and simulation
- Includes documentation and many examples

#### Model Simulation





#### Energy Reduction and Inconvenience Cost



Various energy reduction amount, at increased time in execution

#### User Reward and Utility



Users achieve higher utility when they submit truthful valuation

#### Impact of Energy Reduction Target



Increased energy reduction and reward for higher energy reduction target

#### Conclusions

- HPC systems are power-hungry and energy-costly
- We proposed
  - VCG-based auction mechanism model
  - Truthful participation from HPC users
- We developed
  - A job scheduling simulator
  - Includes resource allocation and auction mechanism model

Thank You! Questions?

**Acknowledgements:** 



