Energy Demand Response Modeling for High Performance Computing Systems

Kishwar Ahmed and Jason Liu Florida International University

Workshop on Modeling and Simulation of Systems and Applications August 15-17, 2018♦ University of Washington, Seattle, Washington

Demand Response

- Participants reduce energy consumption during
 - Emergency events
 - High electricity price period
- Emergency demand response
 - Mandatory energy reduction to target level
- Economic demand response
 - Voluntary participation based on economic incentives

Why Demand Response?

Financial benefits E

Environmental benefits

Power system stability

Increase in demand response participation
Many well-known companies, such as Google, Apple, etc.

Participation in demand response to double in 2020

HPC is Energy-Costly!

- Worldwide investment on supercomputers
 - In 2016: \$38 billion
- Supercomputer's lifelong energy cost almost equals investment cost
- Advent of Exascale
 - 20MW → \$20 million/year for electricity

Source: "Total Cost of Ownership in High Performance Computing. HPC data center cost considerations: investment, operation and maintenance." in SoSE 2014

HPC in Demand Response

- Can HPC systems reduce the energy consumption and energy cost through emergency and economic demand response participation?
 - Supercomputers are willing to participate [Patki et al., 2016; Bates et al. 2015]
- Our solutions:
 - Emergency demand-response model
 - Application performance loss vs. energy reduction gain?
 - Economic demand-response model
 - How to incentivize HPC users for demand response participation?

Emergency DR Model

- Power/performance prediction model
 - Empirical data
 - Polynomial regression
- Demand response job scheduling
 - FCFS with possible job eviction (to ensure power limit)
- Resource provisioning
 - DVFS, power capping, node scaling

Power/Performance Prediction Model

Apply regression (quite a few alternatives) on power and execution time

Job Scheduling

- During normal operation:
 - Traditional job scheduling
 - Optimized for best performance (max frequency)
- During demand response period:
 - Minimize energy for resource allocation
 - DVFS, power-capping, node scaling
 - Reduce power limit
 - May have to evict some jobs

Resource Allocation

- During normal operation
 - Run applications at maximum frequency for best performance
- During demand response: energy conservation

Minimize:
$$\sum_{j \in R} e_R(j, f_j)$$

subject to $f_{min} \leq f_j \leq f_{max}$ $p_{run} = \sum_{j \in R} p(j, f_j) \leq \hat{p}$

where, $e_R(j, f_j) = (1 - \alpha_j) \cdot n_j \cdot p(j, f_j) \cdot t(j, f_j)$

Model Evaluation

Vary system size: 128, 256, and 512 processors

Reduced energy consumption at moderate increase in turnaround time

Economic DR Model

- Economic demand response
 - Voluntary participation based on economic incentives
- How to incentivize HPC users for participation?
 - Participation may introduce execution delays
 - Need a proper rewarding mechanism
- HPC economic DR model
 - A contract-based rewarding mechanism to incentivize HPC users' participations

Contract Theory

- A formal (economic) study to develop contracts between parties
 - Principal: who offers the contracts (HPC operator)
 - Agents: who are offered the contracts and can accept/ reject (HPC users)
- Widely used in theory and practice
 - Economics (e.g., managerial compensation)
 - Communication (e.g., cellular network)

Resource Allocation

Maximize: $\sum_{i=1}^{n} m_i \cdot (\phi \cdot \gamma \cdot \Delta e_i - r_i)$ subject to, $f_{min} \leq f'_i \leq f_{max}$, IR, and IC constraints

Definition (Individual Rationality (IR) Constraint)

Participants in contract mechanism achieve non-negative pay-off or utility $u_i = r_i - \theta_i \cdot c(\Delta t_i) \ge 0$

Definition (Incentive Compatibility (IC) Constraint)

Utility is maximized when participant chooses own contract type

$$r_i - \theta_i \cdot c(\Delta t_i) \geq r_{i'} - \theta_i \cdot c(\Delta t_{i'})$$

Energy and Reward

Energy reduction and rewards throughout entire time periods

Conclusions

- HPC demand-response models
 - Emergency demand response participation
 - Economic demand response participation
- A *win-win* situation to all:
 - HPC systems reduce energy cost
 - HPC users earn rewards
 - Power grid achieves energy reduction and power stability

Thanks!

Acknowledgements:

Kishwar Ahmed, Jason Liu, ModSim Workshop, August 2018