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Why Performance Prediction in High 
Performance Computing (HPC) System? 
• Rapid changes in HPC architecture 

•  E.g., introduction of many-core and multi-core architecture   

• We are rapidly approaching towards exascale computing 
•  New and advanced interconnect architecture to support high 

computation capacity 

• Performance prediction facilitates 
•  Evaluating design alternatives 
•  Identifying performance issues  

3 July 29, 2018 



Interconnection Network Topology 
•  Interconnection network specifies how to route data 

from 
•  Processors to memory 
•  One node (processor + memory) to another 

•  Interconnect network topology 
•  Arrangement of nodes, switches 
•  Affects routing, throughput, latency  
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Which Interconnect Topologies We 
Model?  
• Dominant interconnection network topologies in current 

and future HPC systems: Dragonfly, Fat-tree, and Torus 
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Problem Statement and Solution 
• Performance prediction of large-scale HPC system with 

following properties 
•  Accurate: The prediction should produce accurate estimation of 

performance parameters (e.g., latency, bandwidth) 
•  Realistic: The models should represent real-life implementation of 

the architecture  
•  For example, Blue Gene/Q and Gemini for torus, Aries for dragonfly, 

Infiniband for fat-tree 
•  Applicable: The models must be applicable for real-life HPC 

applications 

• Our performance prediction models ensure all the three 
properties 
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We are here 
•  Introduction 
• Performance Prediction Models in HPC System 

•  Related Works 
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•  Interconnection Network Models 
•  Validation of Models and Results 

• Conclusions 
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Related Works 
•  Performance prediction in large-scale interconnect 

•  BigSim [Geng04]: early efforts for large-scale performance prediction 
•  Structural Simulation Toolkit (SST) [Arun11]: a comprehensive 

framework for modeling large-scale HPC system 
•  Co-Design of Exascale Storage System (CODES): torus [Ning11], 

dragonfly [Misbah14], fat-tree [Ning15]) 
 

•  How our work differs: 
•  Our interconnection network models reflect accurate and actual 

implementations of interconnect topologies (e.g., Aries, Blue Gene/Q, 
Infiniband) 
•  We can study various interconnection networks of real (either existing or 

planned) HPC system. 
•  We can model real-life scientific applications  

•  e.g., SNAPSim using Edison supercomputer interconnect 
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A PDES Engine: Simian 
• An open-source, process-oriented parallel discrete-event 

(PDES) engine 
• Distinct features 

•  A minimalistic design (only around 500 lines of code) 
•  Minimal dependency to third-party libraries 
•  A very simplistic application programming interface (API) 
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MPI Models  
• Message Passing Interface (MPI) 

•  One of the most popular parallel programming tools on HPC 
platform 

• We used different MPI functions to perform 
communication among nodes 
•  Point-to-point (e.g., MPI_Send, MPI_Recv) 
•  Collective (e.g., MPI_Bcast, MPI_Reduce) 
•  Group and collective operations (e.g., MPI_Comm_dup, 

MPI_Group_size)  
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Dragonfly Topology 
• A cost-efficient topology 

•  Exploits the economical, optical signaling technologies for long 
distance communication 

•  High-radix (virtual) router 
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Cray’s Aries Interconnect 
• Used by many supercomputers as interconnect 

architecture  
• Uses dragonfly topology 
• Consists of cabinets 

•  Two cabinets per group  
•  Three chassis per cabinets 
•  Six chassis per group 
•  Sixteen Aries blades per chassis 
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Aries Interconnect (Validation#1) 
•  Trinity@LANL 

•  Ranked 7th in Top500 list 
•  Consists of 9436 nodes and 301,952 cores 
•  Uses a Cray XC40 system  

•  Nodes connected via Aries interconnect 

• We measured  
•  Average end-to-end latency 

• Compared 
•  With empirical results 
•  In general, close resemblance 
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Fat-tree Model 
•  Fat-tree widely-used in HPC clusters and data center 

networks 
• Many popular variations of fat-tree topologies 

•  m-port n-tree, k-ary n-tree 
•  We used the m-port n-tree in our work  
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A 4-port 3-tree  

A Multiple LID Routing Scheme for Fat-Tree-Based InfiniBand Networks,  
Xuan-Yi Lin, Yeh-Ching Chung, and Tai-Yi Huang 
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Validation: Fat-tree Model 
• Stampede@TACC 

•  Ranked 12th in top500 list 
•  Consists of 6,400 nodes connected via fat-tree-based Infiniband 

FDR network 

• Validated our model with a recently-proposed fat-tree 
simulator: FatTreeSim 

• Similar setup used as in FatTreeSim and Emulab 
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3-D Torus (Gemini) Model 
• Cray’s XE6 system uses 3-D torus-based Gemini 

architecture 
•  In Gemini, each Application-Specific Integrated Circuit 

(ASIC) contains 
•  Two AMD Opteron nodes  
•  48-port YARC router 
•  Each router gives  

•  Ten torus connections 
•  Two connections per direction in the “X” and “Z” dimension 
•  One connection per direction in the “Y direction” 

• We validated Gemini 
•  Using Hopper@NERSC 
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DOE Communication Traces 
• Application communication traces provided by the NERSC 
• We use the open-source SST DUMPI toolkit to process 

the traces 
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A Comparative Study (Contd.) 
• Configurations: 

•  Aries: Trinity@LANL 
•  Fat-tree: Stampede@TACC 
•  Gemini: Hopper@NERSC 

•  6,834 nodes connected via Gemini interconnect at 17X8X24 
•  Blue Gene/Q: Mira@ANL 

•  49,152 nodes connected via Blue Gene/Q at 8X12X16X16X2 

• Results: 
•  Aries has the minimum # of hops 
•  Gemini has the maximum # of hops 
•  Simulation time is consistent 
with # of hops traversal  

18 

 0

 2

 4

 6

 8

 10

 12

Aries Fat-tree Gemini BG/Q
 0

 10

 20

 30

 40

 50

 60

 70

 80

Av
er

ag
e 

N
um

be
r o

f H
op

s

Si
m

ul
at

io
n 

Ti
m

e 
(s

ec
on

d)

Topology Comparison

Number of Hops
Simulation Time

July 29, 2018 



Conclusions 
• We presented performance prediction models for all the 

major interconnection network topologies in HPC system 
• Designed real-life interconnection architectures based on 

the interconnect topologies 
• Validated the accuracy of the models with existing and 

planned HPC architectures 
• Our prediction models are capable of running real-life 

communication and scientific applications 
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Thank you! Questions? 
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