Contract-based Emergency Demand Response Participation of Multi-tenant Colocation Data Center

Presenter: Kishwar Ahmed

Advisor: Dr. Jason Liu

MOTIVATION AND BACKGROUND

Demand Response (DR)

- Customers reduce power consumption
- Demand response getting popular
 - –Some reports
 - Current: 180% increase in demand response from 2010 to 2012 in Baltimore Gas and Electric
 - Future: DR participation to double in 2020

Emergency Demand Response (EDR)

- Ensures reliability during <u>emergency</u> period
- A recent EDR example:
 - Extreme cold in beginning of January 2014
 - Closure of electricity grid
 - EDR in PJM and ERCOT

Energy reduction target at PJM

Colocation data center

- Multi-tenant data center
- Colocation vs. owner-operated data center
 - Colocation
 - Tenants control servers
 - Owner-operated
 - Data center operator controls both servers and supporting system

Colocation data center (Contd.)

- A popular option to small and medium businesses (SMBs)
 - Universities, hospitals, enterprises
- Large-scale companies
 - E.g., VMware, Facebook

Facebook's energy usage: 2012

Some numbers...

- 64% of organizations utilize data center colocation services
- Revenue of colocation increasing 9.4% every year
- Colocations in New York collectively consume 400MWs of power
 - Comparable to google's global data center power demand

LITERATURE REVIEW

Related work

- Optimization of data center resources exploiting ancillary services by utility (e.g., [1])
 - Owner-operated data center
- Multi-tenant colocation demand response ([2, 3])
 - Requires complex bidding mechanism
 - Subject to tenants cheating behavior

Our contribution: We propose an easily-implementable contract-based mechanism for target energy reduction in emergency demand response program for colocation data center

^{[1].} M. Ghamkhari and H. Mohsenian-Rad, "Data centers to offer ancillary services," in *Smart Grid Communications (SmartGridComm)*, 2012 IEEE Third International Conference on. IEEE, 2012, pp.436–441.

^{[2].} L. Zhang, S. Ren, C. Wu, and Z. Li. A Truthful Incentive Mechanism for Emergency Demand Response in Colocation Data Centers, in Infocom 2015.

Model overview

Tenants

PROBLEM FORMULATION AND ALGORITHM

Objective and constraints

• Objective: Minimize total cost

$$\min_{(\Delta e(\theta_i), r(\theta_i))} \sum_{\theta_i \in \Theta} m_{\theta_i} \times r(\theta_i) + \alpha \times e_b$$

- $-m_{\theta_i}$ denotes number of tenants of type- θ_i
- Constraint 1: Colocation should achieve target energy reduction (Δe_{th})

$$\gamma \times \sum_{\theta \in \Theta} m_{\theta i} \times \Delta e(\theta_i) + e_b = \Delta e_{th}$$

Objective and constraints (Contd.)

- Constraint 2: Individual Rationality (IR)
 - Participants achieve non-negative pay-off

$$r(\theta_i) - v(\theta_i, \Delta e(\theta_i)) \ge 0$$

- Constraint 3: Incentive Compatibility (IC)
 - Tenant chooses its own type to maximize utility

$$r(\theta_i) - v(\theta_i, \Delta e(\theta_i)) \ge r(\theta_i') - v(\theta_i, \Delta e(\theta_i'))$$

Two cases

- Contract design with complete information
 - Colocation operator has complete knowledge of type of each tenant

$$\min_{(\Delta e(\theta i), r(\theta i))} \sum_{\theta i \in \Theta} m_{\theta i} \times r(\theta i) + \alpha \times e_{b}$$

s.t., IR, IC and energy reduction constraints

Two cases (Contd.)

- Contract design with incomplete information
 - Colocation operator lacks information of tenant's type distribution

$$\min_{(\Delta e(\theta i), r(\theta i))} \sum_{\theta i \in \Theta} E[m_{\theta i} \times r(\theta i) + \alpha \times e_{\theta} | \{m_{\theta i}\}_{\theta i} \in \Theta]$$

- s.t., IR, IC and energy reduction constraints
- $-\left\{m_{\theta_i}\right\}_{\theta_i\in\Theta}$ denotes distribution of tenants to different types

Algorithm and theorem

- Algorithm: We use exhaustive search algorithm to find optimal solution (also considered in [4])
- Theorem: The designed contracts minimize the colocation operator's cost while satisfying both IR and IC constraints
 - The proof follows through mathematical induction

VALIDATION

Energy reduction target

600 (W) 400 200 1 6 12 18 24 Hour

(a) Energy reduction target at PJM on January 7, 2014

(b) Scaled energy reduction target at colocation

Results

Achieve target energy reduction at much lower cost!

Results (Contd.)

Tenants also receive reward for EDR participation!

Results (Contd.)

Comparison with non-demand response approach

Conclusions

- Studied
 - Colocation emergency demand response
- Proposed
 - Contract-based incentive mechanism
 - Achieves target energy reduction
 - Rewards tenants
- Trace-based simulation study
 - To validate Contract-DR

Questions?

BACKUP SLIDES

Colocation model

• Energy reduction by tenant of type- θ_i

$$\Delta e(\theta_i) = n_{\theta_i} \times e_{0, \theta_i} \times T$$

- $-n_{\theta_i}$ denotes number of servers turned-off
- Energy Storage Device (ESD)
 - To assist tenants in achieving energy reduction
 - Discharge amount: e_b
 - ESD discharge cost: α per kWh

Tenant utility

Tenant's inconvenience cost

$$v(\theta_i, \Delta e(\theta_i)) = \xi_{\theta_i} \times c(\Delta e(\theta_i))$$

- $-\xi_{\theta_i}$ denotes cost of energy reduction
- $-c(\Delta e(\theta_i))$ denotes a general cost function of energy reduction
- Tenant's utility

$$u(\theta_i, \Delta e(\theta_i)) = r(\theta_i) - v(\theta_i, \Delta e(\theta_i))$$

 $- r(\theta_i)$ denotes reward awarded to tenant of type- θ_i