
Interconnection Network Models for
Large-Scale Performance Prediction

Kishwar Ahmed, Mohammad Obaida, Jason Liu, Florida
International University, FL, USA
Stephan Eidenbenz, Nandakishore Santhi, Joe Zerr, Los Alamos
National Laboratory, NM, USA

4th Summer of CODES
July 17-18, 2018, Argonne National Laboratory, IL, USA

Outline

•  Motivation

•  Performance Prediction Toolkit (PPT)

•  Automatic Performance Prediction

•  Conclusion

Motivation

•  Rapid changes in HPC architecture
•  Multi-core and many-core architecture
•  Accelerator technologies
•  Complex memory hierarchies

•  HPC software adaptation is a constant theme:
•  No code is left behind: must guarantee good performance
•  Need high-skilled software architects and computational

physicists

•  Need modeling and simulation of large-scale HPC systems
and applications
•  And the systems are getting larger (exascale systems around the

corner)

HPC Performance Prediction

•  HPC performance prediction provides insight about
•  Applications (e.g., scalability, performance variability)

•  Hardware/software (e.g., better design)

•  Workload behavior (present and future)

•  Which is useful for –
•  Understanding application performance issues

•  Improving application and system

•  Budgeting, designing efficiency systems (present and
future)

Our Goals for Rapid
Performance Prediction

•  Easy integration with other models of varying
abstraction

•  Easy integration with applications (e.g., physics
code)

•  Short development cycles

•  Performance and scale

Outline

•  Motivation

•  Performance Prediction Toolkit (PPT)

•  Automatic Performance Prediction

•  Conclusion

Performance Prediction
Toolkit (PPT)

•  Make it simple, fast, and most of all useful
•  Designed to allow rapid assessment and performance

prediction of large-scale applications on existing and
future HPC platforms

•  PPT is a library of models of computational physics
applications, middleware, and hardware
•  That allows users to predict execution time by running

pseudo-code implementations of physics applications

•  “Scalable Codesign Performance Prediction for
Computational Physics” project

PPT Architecture

Large-Scale Scientific Applications (SNAP, TAD, MC, ..)

Message-Passing Interface (MPI)

Interconnect Models Node Models

Fat Tree Dragonfly Torus I/O and File
Systems

Memory
Cache Processor

Simian (Parallel Discrete-Event Simulation Engine)

Simian: PDES using
Interpreted Languages

•  Open-source general purpose parallel discrete-event
library

•  Independent implementation in three interpreted
languages: Python, LUA, and JavaScript

•  Minimalistic design: LOC = 500 with 8 common
methods (python implementation)

•  Simulation code can be Just-In-Time (JIT) compiled to
achieve very competitive event-rates

•  Support process-oriented world-view (using Python
greenlets and LUA coroutines)

Integrated MPI Model

•  Developed based on Simian (entities,
processes, services)

•  Include all common MPI functions
•  Point-to-point and collective operations
•  Blocking and non-blocking operations
•  Sub-communicators and sub-groups

•  Packet-oriented model
•  Large messages are broken down into

packets (say, 64B)

•  Reliable data transfer
•  Acknowledgement, retransmission, etc.

MPI Example

Hardware
configuration

MPI application

Run MPI

Interconnect Model

Outport

Inport

Outport

Inport

Outport

Inport

In
te
rfa
ce

Pa
ra

lle
l

In
pu

t P
or

ts
Pa

ra
lle

l
O

ut
pu

t P
or

ts

Simian Service
handle_packet_arrival()

Schedule service at other Simian entity
req.service(handle_packet_arrival)

+X

+Z

-Y

H
-Z

+Y

-X

Simian Process
routing_process()

R
Simian Process

receive_process()

Host
Simian Entity

Switch
Simian Entity

Interconnect model using Simian entities, processes, and services

Interconnect Model (Contd.)

•  Common interconnect topologies
•  Torus (Gemini, Blue Gene/Q)
•  Dragonfly (Aries)
•  Fat-tree (Infiniband)

•  Some properties:
•  Emphasis on production systems
•  Cielo, Darter, Edison, Hopper, Mira,

Sequoia, Stampede, Titan, Vulcan, …
•  Seamlessly integrated with MPI
•  Scalable to large number of nodes
•  Detailed congestion modeling

3D Torus – Cray’s Gemini
Interconnect

•  3D torus direct topology

•  Each building block
•  2 compute nodes

•  10 torus connections
•  ±X*2, ±Y, ±Z*2

•  Examples: Jaguar (ORNL),
Hopper (NERSC), Cielo
(LANL)

Gemini Validation

Compared against empirical results from Hopper @ NERSC

 0

 1

 2

 3

 4

 5

 6

 7

 8 32 128 512 2K 8K 32K

T
h

ro
u

g
h

p
u

t
(G

b
yt

e
s/

se
c)

Data Size (bytes)

FMA Put Throughput (Empirical vs. Simulation)

empirical, PPN=4
empirical, PPN=2
empirical, PPN=1
simulation, PPN=4
simulation, PPN=2
simulation, PPN=1

Gemini FMA put
throughput (as reported
in [2]) versus simulated
throughput as a
function of transfer size
for 1, 2, and 4 processes
per node.

Trace-Driven Simulation

•  Mini-app MPI traces:
•  Trace generated when running mini - apps on NERSC

Hopper (Cray XE06) with <=1024 cores

•  Trace contains information of the MPI calls (including
timing, source/destination ranks, data size, ...)

0.409470006 0.410042020 MPI_Isend 2601 MPI_DOUBLE 16 9

Start time End time MPI call Data type

Count Destination
rank

Request ID

Trace-Driven Simulation
(Contd.)

•  For this experiment, we use:
•  LULESH mini-app from ExMatEx

•  64 MPI processes

•  Run trace for each MPI rank
•  Start MPI call at exactly same time

indicated in trace file

•  Store completion time of MPI call

•  Compare it with the completion time in
trace file

0.0*100
5.0*107
1.0*108
1.5*108
2.0*108
2.5*108
3.0*108

 0 2 4 6 8 10

D
ur

at
io

n
of

 M
PI

 C
al

l (
na

no
se

co
nd

s)

Time (seconds)

Trace Data

0.0*100
5.0*107
1.0*108
1.5*108
2.0*108
2.5*108
3.0*108

 0 2 4 6 8 10
D

ur
at

io
n

of
 M

PI
 C

al
l (

na
no

se
co

nd
s)

Time (seconds)

Simulation (with Time Shift)

Case Study: SN Application
Proxy

•  SNAP is a “mini-app” for
PARTISN

•  PARTISN is code for solving
radiation transport equation for
neutron and gamma transport

•  Use MPI to facilitate
communication

•  Use node model to compute time

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 200 400 600 800 1000 1200 1400 1600

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Processes

Predicted (SNAPSim)
Measured (SNAP)

64 × 32 × 48 Spatial Mesh,
384 Angles, 42 Energy Groups

NERSC’s Edison supercomputer, which
is Cray XC30 system with Aries
interconnect

Parallel Performance

•  1500-node cluster at LANL,
connected by an Infiniband
QDR interconnect

•  MPI_Allreduce, with
different data size (1K or
4K)

•  Three times event-rate (C++
parallel simulator: MiniSSF)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 12 48 192 768 3072
0.0*100

2.0*105

4.0*105

6.0*105

8.0*105

1.0*106

1.2*106

1.4*106

R
un

 T
im

e
(s

ec
on

ds
)

Ev
en

t R
at

e

Number of Cores

1KB, run time
4KB, run time
1KB, evt rate
4KB, evt rate

Outline

•  Motivation

•  Performance Prediction Toolkit (PPT)

•  Automatic Performance Prediction

•  Conclusion

The Framework

•  Purpose is to maintain accuracy and performance,
flexibility, and scalability; so as to do studies of large-
scale applications

•  Steps of an application performance analysis
•  Start with an application program

•  Statically analyze the program to build an abstract model

•  Transform into an executable model (encompassing CPU,
GPU, and communication)

•  Run model with HPC simulation (for performance
prediction)

The Framework (Contd.)

Static Analysis

•  Derive an abstract model
•  GPU computation
•  Identify GPU kernels

•  Based on COMPASS

•  Obtain workload (flops and memory loads/stores)

•  CPU computation
•  Transform source code to IR using LLVM

•  Using Analytical Memory Model (AMM) model resource-
specific operations (e.g., loads, stores)

GPU Model Building

•  OpenARC provides
•  Memory-GPU transfers

and vice versa, loads,
stores, flops, etc.

•  Build GPU-warp task-list
from OpenARC-
generated IR

Execution Model

•  Launch application model on PPT

•  PPT features
•  Hardware models (processor, memory, GPU)

•  Full-fledged MPI model

•  Detailed interconnect models

•  Large-scale workload model

Experiment: Runtime
Prediction (CPU)

•  Laplace 2D benchmark
•  Compute-intensive application

•  Four different mesh sizes
•  With and without compiler

optimizations

•  Two Intel Xeon processors
running at 2.4GHz frequency

•  Observations
•  7.08% error (with optimizations)

•  3.12% error (without
optimizations)

Experiment: Runtime
Prediction (GPU)

•  Application: Laplace 2D MM

•  Two 8-core Xeon E5-5645
@2.1 GHz

•  NVIDIA Geforce GM 204

•  Observations:
•  13.8% error for 1024 X 1024

•  0.16% error for 8192 X 8192

Outline

•  Motivation

•  Performance Prediction Toolkit (PPT)

•  Automatic Performance Prediction

•  Conclusion

Conclusion

•  Building a full HPC performance prediction model

•  PPT – Performance Prediction Toolkit

•  MPI model and interconnection network models (torus,
dragonfly, fat-tree)

•  Automatic application performance prediction

•  Future work:
•  Apply dynamic analysis and ML for irregular applications

•  Automatic application optimization framework

References

•  An Integrated Interconnection Network Model for Large-Scale Performance
Prediction, Kishwar Ahmed, Mohammad Obaida, Jason Liu, Stephan Eidenbenz,
Nandakishore Santhi, and Guillaume Chapuis. 2016 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation (SIGSIM-PADS 2016), May 2016.

•  Scalable Interconnection Network Models for Rapid Performance Prediction of
HPC Applications, Kishwar Ahmed, Jason Liu, Stephan Eidenbenz, and Joe Zerr.
18th International Conference on High Performance Computing and
Communications (HPCC 2016), December 2016.

•  The Simian Concept: Parallel Discrete Event Simulation with Interpreted Languages
and Just-in-Time Compilation, Nandakishore Santhi, Stephan Eidenbenz, and Jason
Liu. 2015 Winter Simulation Conference (WSC 2015), December 2015.

•  Parallel Application Performance Prediction Using Analysis Based Models and HPC
Simulations, Mohammad Abu Obaida, Jason Liu, Gopinath Chennupati,
Nandakishore Santhi, and Stephan Eidenbenz. 2018 SIGSIM Principles of
Advanced Discrete Simulation (SIGSIM-PADS’18), May 2018.

Thank you! Questions?

