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Motivation 

•  Rapid changes in HPC architecture 
•  Multi-core and many-core architecture 
•  Accelerator technologies  
•  Complex memory hierarchies 

•  HPC software adaptation is a constant theme:  
•  No code is left behind: must guarantee good performance 
•  Need high-skilled software architects and computational 

physicists 

•  Need modeling and simulation of large-scale HPC systems 
and applications 
•  And the systems are getting larger (exascale systems around the 

corner) 



HPC Performance Prediction 

•  HPC performance prediction provides insight about 
•  Applications (e.g., scalability, performance variability) 

•  Hardware/software (e.g., better design) 

•  Workload behavior (present and future) 

•  Which is useful for – 
•  Understanding application performance issues 

•  Improving application and system 

•  Budgeting, designing efficiency systems (present and 
future) 



Our Goals for Rapid 
Performance Prediction 

•  Easy integration with other models of  varying 
abstraction 

•  Easy integration with applications (e.g., physics 
code) 

•  Short development cycles 

•  Performance and scale 
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Performance Prediction 
Toolkit (PPT) 

•  Make it simple, fast, and most of all useful 
•  Designed to allow rapid assessment and performance 

prediction of  large-scale applications on existing and 
future HPC platforms 

•  PPT is a library of  models of  computational physics 
applications, middleware, and hardware 
•  That allows users to predict execution time by running 

pseudo-code implementations of  physics applications 

•  “Scalable Codesign Performance Prediction for 
Computational Physics” project 



PPT Architecture 

Large-Scale Scientific Applications (SNAP, TAD, MC, ..) 

Message-Passing Interface (MPI)

Interconnect Models Node Models

Fat Tree Dragonfly Torus I/O and File 
Systems

Memory 
Cache Processor

Simian (Parallel Discrete-Event Simulation Engine)



Simian: PDES using 
Interpreted Languages  

•  Open-source general purpose parallel discrete-event 
library 

•  Independent implementation in three interpreted 
languages: Python, LUA, and JavaScript 

•  Minimalistic design: LOC = 500 with 8 common 
methods (python implementation) 

•  Simulation code can be Just-In-Time (JIT) compiled to 
achieve very competitive event-rates 

•  Support process-oriented world-view (using Python 
greenlets and LUA coroutines) 



Integrated MPI Model 

•  Developed based on Simian (entities, 
processes, services) 

•  Include all common MPI functions 
•  Point-to-point and collective operations 
•  Blocking and non-blocking operations 
•  Sub-communicators and sub-groups 

•  Packet-oriented model  
•  Large messages are broken down into 

packets (say, 64B) 

•  Reliable data transfer 
•  Acknowledgement, retransmission, etc. 



MPI Example 

Hardware 
configuration 

MPI application 

Run MPI 



Interconnect Model 
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Interconnect Model (Contd.)  

•  Common interconnect topologies 
•  Torus (Gemini, Blue Gene/Q) 
•  Dragonfly (Aries) 
•  Fat-tree (Infiniband) 

•  Some properties: 
•  Emphasis on production systems 
•  Cielo, Darter, Edison, Hopper, Mira, 

Sequoia, Stampede, Titan, Vulcan, … 
•  Seamlessly integrated with MPI 
•  Scalable to large number of  nodes 
•  Detailed congestion modeling 



3D Torus – Cray’s Gemini 
Interconnect 

•  3D torus direct topology 

•  Each building block 
•  2 compute nodes 

•  10 torus connections 
•  ±X*2, ±Y, ±Z*2 

•  Examples: Jaguar (ORNL), 
Hopper (NERSC), Cielo 
(LANL) 



Gemini Validation 

Compared against empirical results from Hopper @ NERSC 
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Trace-Driven Simulation 

•  Mini-app MPI traces: 
•  Trace generated when running mini - apps on NERSC 

Hopper (Cray XE06 ) with <=1024 cores 

•  Trace contains information of  the MPI calls  (including 
timing, source/destination ranks, data  size, ...) 

0.409470006 0.410042020 MPI_Isend 2601 MPI_DOUBLE 16 9

Start time End time MPI call Data type

Count Destination
rank

Request ID



Trace-Driven Simulation 
(Contd.) 

•  For this experiment, we use: 
•  LULESH mini-app from  ExMatEx 

•  64 MPI processes 

•  Run trace for each MPI rank 
•  Start MPI call at exactly same time 

indicated in trace file 

•  Store completion time of  MPI call 

•  Compare it with the completion time in 
trace file 
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Case Study: SN Application 
Proxy  

•  SNAP is a “mini-app” for 
PARTISN 

•  PARTISN is code for solving 
radiation transport equation for 
neutron and gamma transport 

•  Use MPI to facilitate 
communication 

•  Use node model to compute time 
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Parallel Performance 

•  1500-node cluster at LANL, 
connected by an Infiniband 
QDR interconnect 

•  MPI_Allreduce, with 
different data size (1K or 
4K) 

•  Three times event-rate (C++ 
parallel simulator: MiniSSF) 
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The Framework 

•  Purpose is to maintain accuracy and performance, 
flexibility, and scalability; so as to do studies of  large-
scale applications 

•  Steps of  an application performance analysis 
•  Start with an application program 

•  Statically analyze the program to build an abstract model 

•  Transform into an executable model (encompassing CPU, 
GPU, and communication) 

•  Run model with HPC simulation (for performance 
prediction) 



The Framework (Contd.) 



Static Analysis 

•  Derive an abstract model  
•  GPU computation 
•  Identify GPU kernels 

•  Based on COMPASS 

•  Obtain workload (flops and memory loads/stores) 

•  CPU computation 
•  Transform source code to IR using LLVM 

•  Using Analytical Memory Model (AMM) model resource-
specific operations (e.g., loads, stores) 



GPU Model Building 

•  OpenARC provides 
•  Memory-GPU transfers 

and vice versa, loads, 
stores, flops, etc. 

•  Build GPU-warp task-list 
from OpenARC-
generated IR 



Execution Model 

•  Launch application model on PPT 

•  PPT features 
•  Hardware models (processor, memory, GPU) 

•  Full-fledged MPI model 

•  Detailed interconnect models 

•  Large-scale workload model 



Experiment: Runtime 
Prediction (CPU) 

•  Laplace 2D benchmark 
•  Compute-intensive application  

•  Four different mesh sizes 
•  With and without compiler 

optimizations 

•  Two Intel Xeon processors 
running at 2.4GHz frequency 

•  Observations 
•  7.08% error (with optimizations) 

•  3.12% error (without 
optimizations) 



Experiment: Runtime 
Prediction (GPU) 

•  Application: Laplace 2D MM 

•  Two 8-core Xeon E5-5645 
@2.1 GHz 

•  NVIDIA Geforce GM 204  

•  Observations: 
•  13.8% error for 1024 X 1024 

•  0.16% error for 8192 X 8192 
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Conclusion 

•  Building a full HPC performance prediction model 

•  PPT – Performance Prediction Toolkit 

•  MPI model and interconnection network models (torus, 
dragonfly, fat-tree) 

•  Automatic application performance prediction 

•  Future work: 
•  Apply dynamic analysis and ML for irregular applications 

•  Automatic application optimization framework 
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Thank you! Questions? 


