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What is Demand Response (DR)? 
• DR: Participants reduce energy consumption 

•  During transient surge in power demand 
•  Other emergency events 

• A DR example: 
•  Extreme cold in beginning of  
January 2014 
•  Closure of electricity grid 
•  Emergency demand response in  
PJM and ERCOT  Energy reduction target at PJM on January 2014 
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Demand Response Is Popular! 
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HPC System as DR Participant? 
• HPC system is a major energy consumer 

•  China’s 34-petaflop Tianhe-2 consumes 18MWs of power 
•  Can supply small town of 20,000 homes 

•  The power usage of future HPC system is projected to increase  
•  Future exascale supercomputer has power capping limit 
•  But not possible with current system architecture 

• Demand response aware job scheduling envisioned as 
possible future direction by national laboratories 
[“Intelligent Job Scheduling” by Gregory A. Koenig-ORNL]  
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HPC System as DR Participant? (Contd.) 
• A number of recent surveys on possibility of 

supercomputer’s participation in DR program 
• Patki et al. (in 2016) 

•  A survey to investigate demand response participation of 11 
supercomputing sites in US 

•  “…SCs in the United States were interested in a tighter integration 
with their ESPs to improve Demand Management (DM).” 

• Bates et al. (in 2015) 
•  “…the most straightforward ways that SCs can begin the process 

of developing a DR capability is by enhancing existing system 
software (e.g., job scheduler, resource manager)” 
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Power-capping 
• What is power-capping? 

•  Dynamic setting of power budget to a single server to achieve 
overall HPC system power limit 

• Power-capping is important 
•  To achieve global power cap for the cluster 
•  Intel’s Running Average Power Limit (RAPL) can combine good 

properties of DVFS 

• Power-capping is common in modern processors 
•  Intel processors support power capping through RAPL interface 
•  AMD processors’  Advanced Power Management Link (APML) 

technology 
•  NVIDIA GPU’s NVIDIA Management Library (NVML) 
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Related Works 
• Data center and smart building demand response 

•  Workload scheduling: such as load shifting in time, geographical 
load balancing 

•  Resource management: server consolidation, speed-scaling 
• However,  

•  These approaches are applicable for internet transaction-based 
data center workload  

•  Service time for data center workload are assumed uniform and 
delay-intolerant 

• HPC system demand response 
•  Recently, we are proposing HPC system demand response model 

•  Based on  
•  dynamic voltage frequency scaling (DVFS) 
•  Power capping 
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DVFS-based Demand Response  
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DVFS-based Demand Response 
• Power and performance prediction model 

•  Based on a polynomial regression model 

• Resource provisioning 
•   Determine processors’ optimal frequency to run the job 

•  Job scheduling 
•  Based on FCFS with possible job eviction (to ensure power bound 

constraint) 
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Power and Performance Prediction 
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Optimal Frequency Allocation 
• Determine optimal frequency such that  

•  Energy consumption is optimized during demand response period 
•  Highest frequency during normal periods to ensure highest 

performance 
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Job Scheduler Simulator (Contd.) 
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Experiment 
• Workload trace collected from Parallel Workloads Archive 
• Power and performance data collected from literature for 

HPC applications 
•  Two scheduling policies  

•  Used in Linux kernel of Intel processors  
•  Performance-policy 

•  Always chooses maximum frequency to ensure best application runtime 
•   Powersave-policy 

•  Always chooses the minimum frequency to minimize the power 
consumption 

14 



Energy vs. Performance 
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Impact of Demand-response Event Ratio 
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Power-capping-based Demand Response  
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Applications and Benchmarks 
Benchmark Type Description Applications Application 

Description 

Scalable science 
benchmarks 

Expected to run at full scale of 
the CORAL systems 

HACC, Nekbone, 
etc. 

Compute 
intensity, small 
messages, 
allreduce 

Throughput 
benchmarks  

Represent large ensemble runs UMT2013, 
AMG2013, SNAP 
LULESH, etc.  

Shock 
hydrodynamics for 
unstructured 
meshes. 

Data Centric 
Benchmarks 

Represent emerging data 
intensive workloads – Integer 
operations, instruction throughput, 
indirect addressing 

Graph500, Hash, 
etc. 

Parallel hash 
benchmark 

Skeleton Benchmarks  Investigate various platform 
characteristics including network 
performance, threading 
overheads, etc. 

CLOMP, XSBench, 
etc. 

Stresses system 
through memory 
capacity. 
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Applications and Benchmarks (Contd.) 
Benchmark 
Type 

Description Applications Application Description 

NAS Parallel 
Benchmarks 

A small set of programs 
designed to help 
evaluate the 
performance of parallel 
supercomputers 

IS, EP, FT, CG CG - Conjugate Gradient method 

Dense-matrix 
multiply 
benchmarks 

A simple, multi-threaded, 
dense-matrix multiply 
benchmark. The code is 
designed to measure the 
sustained, floating-point 
computational rate of a 
single node 

MT-DGEMM, 
Intel MKL 
DGEMM 

MT-DGEMM: The source code given 
by NERSC (National Energy Research 
Scientific Computing Center) 
 
Intel MKL DGEMM: The source code 
given by Intel to multiply matrix 
 

Processor Stress 
Test Utility 

N/A FIRESTARTER Maximizes the energy consumption of 
64-Bit x86 processors by generating 
heavy load on the execution units as 
well as transferring data between the 
cores and multiple levels of the 
memory hierarchy. 
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Measurement Tools 
•  etrace2 

•  Reports energy and execution time of an application 
•  Relies on the Intel RAPL interface 
•  Developed under DOE COOLR/ARGO project  

• An example run 

20 

../tools/pycoolr/clr_rapl.py --limitp=140 
etrace2 mpirun -n 32 bin/cg.D.32 
 
../tools/pycoolr/clr_rapl.py --limitp=120 
etrace2 mpirun -n 32 bin/cg.D.32 

Output: 
p0 140.0 
p1 140.0 
 
 NAS Parallel Benchmarks 3.3 -- CG Benchmark 
 
 Size:    1500000 
 Iterations:   100 
 Number of active processes:    32 
 Number of nonzeroes per row:       21 
 Eigenvalue shift: .500E+03 
 
   iteration           ||r||                 zeta 
        1       0.73652606305295E-12   499.9996989885352 
... 
# ETRACE2_VERSION=0.1 
# ELAPSED=1652.960293 
# ENERGY=91937.964940 
# ENERGY_SOCKET0=21333.227051 
# ENERGY_DRAM0=30015.779454 
# ENERGY_SOCKET1=15409.632036 
# ENERGY_DRAM1=25180.102634 



Measurement Tools (Contd.) 
•  pycoolr 

•  Measure processor power usage and processor temperature 
•  Use Intel RAPL capability to measure power usage  
•  Power capping limit change capability 
•  Reports data in json format  

•   An example run     

21 

../tools/pycoolr/clr_rapl.py --limitp=140 
mpirun -n 32 ./nekbone ex1 
 
./coolrs.py > nekbone.out 

{"sample":"temp","time":
1499822397.016,"node":"protos","p0":{"mean":
34.89 ,"std":1.20 ,"min":33.00 ,"max":36.00 ,"0":
33,"1":33,"2":35,"3":36,"4":35,"5":36,"6":36,"7":
34,"pkg":36}} 
 
{"sample":"energy","time":
1499822397.017,"node":"protos","label":"run","energ
y":{"p0":57706365709,"p0/core":4262338717,"p0/
dram":62433931283,"p1":15467688771,"p1/core":
18329000806,"p1/dram":55726072673},"power":
{"p0":16.3,"p0/core":4.6,"p0/dram":1.4,"p1":
16.7,"p1/core":4.8,"p1/dram":0.9,"total":
35.3},"powercap":{"p0":140.0,"p0/core":0.0,"p0/
dram":0.0,"p1":140.0,"p1/core":0.0,"p1/dram":0.0}} 



Experimental Testbed 
• Experimental node@Tinkerlab 

•  Intel Sandy Bridge processor 
•  Provide power-capping capability 
•  Consists of 2 processors with 32 cores 
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Power and Performance Prediction 
• We use third-order polynomial function to determine 

power usage of job j running at processors’ power-cap 
limit pc: 

• We use exponential regression function to determine 
execution time: 

 
•  Total energy consumption for job j can be determined as 

following: 
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Power and Performance Prediction 
Results 
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Power and Performance Prediction 
Results (Contd.) 
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Experiments at Chameleon Cluster 
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Experiments at Chameleon Cluster 
• We want to – 

•  Show demand response participation model can be feasible in real-
life setup 
•  Use Chameleon cluster for such experiments  

•  Measure power and performance 
•  Using tools such as pycoolr, etrace2, and racadm 

•  Run MPI-based applications 
•  Using multiple nodes inside Chameleon cluster 

•  Implement a scheduler algorithm inside the Chameleon 
•  To show effectiveness of demand response model   
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Application Execution@Chameleon 
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Power-capping Inside Chameleon 
• We initially tried to use pycoolr tool to cap power 

•  But faced some difficulties with RAPL availability on DELL servers 
at Chameleon 

• We have been using Dell RACADM tool 
•  To measure power usage at runtime 
•  To cap power at different limit 
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Applications on Multiple Nodes 
• Running MPI-based applications using existing complex 

appliances on MPI protocol 
• Based on the runs, we scale to large number of nodes 

•  Adaptive Energy and Power Consumption Prediction (AEPCP) 
model for prediction to large node number 

• Use the experiment results to enable demand response 
•  Exploiting variation in number of nodes per job 
•  Exploiting power capping property 
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Conclusions 
• We studied 

•  Possibility of HPC system’s demand response participation 

• We proposed a demand-response model which ensures 
•  Demand response participation through frequency variation, power 

capping and processor allocation 

• We experimented 
•  Real-life scientific applications on experiment cluster 
•  Demonstrated effectiveness of our proposed approaches 

• Goal 
•  Running applications on multiple nodes with power-capping 

property 
•  Show effectiveness of demand response participation on real 

cluster modifying scheduling algorithm  
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Thank you all! Questions? 
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