HOW TO ENABLE HPC SYSTEM
DEMAND RESPONSE: AN
EXPERIMENTAL STUDY

Kishwar Ahmed,
Florida International University, FL, USA

Kazutomo Yoshii
Argonne National Laboratory, IL, USA

Outline

- Motivation

- DVFS-based Demand Response

- Power-capping-based Demand Response
- Experiments on Chameleon Cluster

- Conclusions

I N
What is Demand Response (DR)?

- DR: Participants reduce energy consumption
- During transient surge in power demand
- Other emergency events

3000

- ADR example: 5 9500 e _
- Extreme cold in beginning of 22000 -
January 2014 g 1o
- Closure of electricity grid ?ZZZ
- Emergency demand response in 0

1 6 12 18 24
Hour
PJM and ERCOT Energy reduction target at PJM on January 2014

Demand Response Is Popular!

SUSTAINABILITY

Why Apple Is Getting into DEMAND RESPONSE

the Energy Business WILL DOUBLE BY 2020:
by Peter Fox-Penner HERE ’s WHY

NOVEMBER 25, 2016

But solar electricity is only the beginning of the future energy marketplace. Many companies SEPTEMBER 3, 2014

are already in markets where “demand-response” contracts enable them to sell the right to

manage a portion of their power use, allowing them to be paid for reducing their energy Chart 1.4 Total DR Sites by Reglon, World Markets: 2013-2020
during hours when the spot price of power is high. In the future, in addition to selling actual 250000 —EETEEE—
mEurope
m Asia Pacific
20000000 o) atin America
Equinix ‘in R&D phase’ of demand response experiments * Middle East & Africa

15,000,000

OCTOBER 16, 2015 BY BRENDAN COYNE — 1 COMMENT

Equinix is “in the R&D phase” of testing demand
response technologies, according to UK MD Russell

10,000,000

Poole.
5,000,000

National Grid wants more businesses to help balance
the electricity system by turning power off or on, or
adjusting loads, in return for payment. However, mission
critical sites have traditionally been reluctant to

2013 2014 2015 2016 2017 2018 2019 2020

(Source: Navigant Research)

increase any perceived risk factors for relatively low
rewards. National Grid though, is rethinking its
mechanisms and contract structures.

5
HPC System as DR Participant?

- HPC system is a major energy consumer
- China’s 34-petaflop Tianhe-2 consumes 18MWs of power
- Can supply small town of 20,000 homes

- The power usage of future HPC system is projected to increase
- Future exascale supercomputer has power capping limit
- But not possible with current system architecture

- Demand response aware job scheduling envisioned as
possible future direction by national laboratories
[“Intelligent Job Scheduling” by Gregory A. Koenig-ORNL]

5
HPC System as DR Participant? (Contd.)

- A number of recent surveys on possibility of
supercomputer’s participation in DR program
- Patki et al. (in 2016)

- A survey to investigate demand response participation of 11
supercomputing sites in US

- “...SCs in the United States were interested in a tighter integration
with their ESPs to improve Demand Management (DM).”

- Bates et al. (in 2015)

- “...the most straightforward ways that SCs can begin the process
of developing a DR capability is by enhancing existing system
Software (e.g., job scheduler, resource manager)”

Power-capping

What is power-capping?
Dynamic setting of power budget to a single server to achieve
overall HPC system power limit
Power-capping is important
To achieve global power cap for the cluster
Intel's Running Average Power Limit (RAPL) can combine good

properties of DVFS
Power-capping is common in modern processors
Intel processors support power capping through RAPL interface

AMD processors’ Advanced Power Management Link (APML)
technology

NVIDIA GPU’s NVIDIA Management Library (NVML)

Related Works

Data center and smart building demand response

Workload scheduling: such as load shifting in time, geographical
load balancing

Resource management: server consolidation, speed-scaling

However,

These approaches are applicable for internet transaction-based
data center workload

Service time for data center workload are assumed uniform and
delay-intolerant
HPC system demand response

Recently, we are proposing HPC system demand response model

Based on
dynamic voltage frequency scaling (DVFS)
Power capping

DVFS-based Demand Response

.
DVFS-based Demand Response

- Power and performance prediction model

- Based on a polynomial regression model
- Resource provisioning

- Determine processors’ optimal frequency to run the job
- Job scheduling

- Based on FCFS with possible job eviction (to ensure power bound
constraint)

Power and Performance Prediction

—— Quantum ESPRESSO
—— Gadget
= —— Seissol /9‘
© 200 - —— WalBerla
=3 —— PMATMUL >
o —— STREAM Z
g =
(j b 2pg.) & =
p(g f)=a+b-f+c-f+d-f : =
g 100 e —
< '/'
50
12 14 16 1.8 2 22 24 26
CPU Frequency (GHz)
120 M 8dgnturﬁ ESPRESSO
—— Gadget
— 100 -~ —— geissol
§ —— WalBerla
2 go| —— PMATMUL
. 2 2 | —— STREAM
tG, f)=a+B-f+v-f)
K] "\|
T e e e e N
E \\‘.—\n\'
20 poog
0 i i i i
12 14 16 1.8 2 22 24 26
CPU Frequency (GHz)
800 M QUantum ESPRESSO
= 700 - —— Gadget
¥ ——— Seissol
= 600 - —— WalBerla
e
. . . 1ol b
— . ® - €
e(J’f) nJ p(J’f) t(J’f) 3 400 [=
8 300
>
S 200
c
w100 ==
0 1

12 14 16 1.8 2 22 24 26
CPU Frequency (GHz)

Optimal Frequency Allocation

- Determine optimal frequency such that
- Energy consumption is optimized during demand response period

- Highest frequency during normal periods to ensure highest
performance

Minimize: } ;. , er(J, f;)
subject to constraints (4) and (5)

er(d; f;) = (1 — ;) -nj - p(3, f;) - 14, f;)
fmin S f] < fma:z: (4)

Prun = »_ P, f;) <P)

JER

Job Scheduler Simulator (Contd.)

Scheduling
Policies
. —~— job departure
A D VSIS 4 -~
RN P
Job Job
Dispatcher ™| Executioner
Waiting Jobs_ - ¥ J Running Jobs, 37
o n -
change Application : : Resource
: Models : : Manager :
A\ E : / N\
Power Performance | : + | Processor Power

Models Models : + | Allocation Allocation

Experiment

- Workload trace collected from Parallel Workloads Archive

- Power and performance data collected from literature for
HPC applications
- Two scheduling policies

- Used in Linux kernel of Intel processors
- Performance-policy

- Always chooses maximum frequency to ensure best application runtime
- Powersave-policy

- Always chooses the minimum frequency to minimize the power
consumption

Energy vs. Performance

300 . . 5500 . —
Performance-policy — Performance-policy
mmmmm Demand-response (DR Event) L s Demand-response (DR Event)
= 280 | === Demand-response (Non-DR Event) 2 4500 | ™= Demand-response (Non-DR Event)
X == Powersave-policy = mmmm Powersave-policy
5 ‘ E
g =00 3 3500
u g
& 240 5
® = 2500
())
> (@]
< 220 g
z 1500
200 1000
128 256 512 128 256 512
Number of Processors Number of Processors

Observation: Reduced energy consumption with focus on
demand response periods

Impact of Demand-response Event Ratio

260 [.E & & 5 T 2800 [—= T T !
255 . . . 2 2600
o, (0]
2 0% 349 E 2400
= 250 € 4:2%
> ©
> c 2200
o) \\ 5 89, 3 —&— Powersave-policy
o 245 227 § 2000 | --o-- Demand-tesponse
o £ —a— Performance-policy
=3 — 1800
g 240 o 2110%
1600 o S
< © 10.7% "
235 | —8— Powersave-policy o 44% 5.4% 6{?04’ ______ SRR
—a— Performance-policy N)(.G% Z 1400 ? plels AR - '
—6— Demand-response D]] :
230 | | pores 1200 ‘ ‘ ‘
20 25 33 50 100 20 25 33 50 100
Demand-response Event Ratio (%) Demand-response Event Ratio (%)

Observation: Average energy decreases with longer
demand response event

Power-capping-based Demand Response

Applications and Benchmarks

Benchmark Type Description Applications Application
Description

Scalable science Expected to run at full scale of HACC, Nekbone, Compute

benchmarks the CORAL systems etc. intensity, small
messages,
allreduce

Throughput Represent large ensemble runs UMT2013, Shock

benchmarks AMG2013, SNAP hydrodynamics for

LULESH, etc. unstructured

meshes.

Data Centric Represent emerging data Graph500, Hash, Parallel hash

Benchmarks intensive workloads — Integer etc. benchmark

operations, instruction throughput,
indirect addressing

Skeleton Benchmarks Investigate various platform CLOMP, XSBench, Stresses system
characteristics including network etc. through memory
performance, threading capacity.

overheads, etc.

. S
Applications and Benchmarks (Contd.)

Type

NAS Parallel A small set of programs IS, EP, FT,CG CG - Conjugate Gradient method
Benchmarks designed to help

evaluate the
performance of parallel

supercomputers
Dense-matrix A simple, multi-threaded, MT-DGEMM, MT-DGEMM: The source code given
multiply dense-matrix multiply Intel MKL by NERSC (National Energy Research
benchmarks benchmark. The codeis DGEMM Scientific Computing Center)
designed to measure the
sustained, floating-point Intel MKL DGEMM: The source code
computational rate of a given by Intel to multiply matrix
single node
Processor Stress N/A FIRESTARTER Maximizes the energy consumption of
Test Utility 64-Bit x86 processors by generating

heavy load on the execution units as
well as transferring data between the
cores and multiple levels of the
memory hierarchy.

Measurement Tools

- etrace2
- Reports energy and execution time of an application
- Relies on the Intel RAPL interface
- Developed under DOE COOLR/ARGO project

Output:
p0 140.0
p1140.0

° An exa m ple ru n NAS Parallel Benchmarks 3.3 -- CG Benchmark

Size: 1500000

..[tools/pycoolr/clr_rapl.py --limitp=140 | | tterations: 100

Number of active processes: 32

etrace2 mpirun -n 32 b|n/ch32 Number of nonzeroes per row: 21
Eigenvalue shift: .500E+03

iteration [Ir]| zeta

. '/t00|8/pyCOO|r/C|r_rapl'py __“mltp=1 20 1 0.73652606305295E-12 499.9996989885352
etrace2 mpirun -n 32 bin/cg.D.32

ETRACE2_VERSION=0.1

ELAPSED=1652.960293

ENERGY=91937.964940

ENERGY_SOCKET0=21333.227051
ENERGY_DRAMO0=30015.779454

ENERGY_SOCKET1=15409.632036
ENERGY_DRAM1=25180.102634

Measurement Tools (Contd.)

- pycoolr
- Measure processor power usage and processor temperature
- Use Intel RAPL capability to measure power usage
- Power capping limit change capability
- Reports data in json format

{"sample":"temp","time":
- An example run 1499822397.016,"node""protos","p0" {"mean":
34.89 ,"std":1.20 ,"min":33.00 ,"max":36.00 ,"0":

..[tools/pycoolr/clr_rapl.py --limitp=140 | | 33,"1":33,"2":35,"3":36,"4":35,"5":36,"6":36,"7":
mpirun -n 32 ./nekbone ex1 34,"pkg":36}}

{"sample":"energy","time":
Jcoolrs.py > nekbone.out 1499822397.017,"node":"protos","label":"run","energ

y"{"p0":57706365709,"p0/core":4262338717,"p0/
dram":62433931283,"p1":15467688771,"p1/core":
18329000806,"p1/dram":55726072673},"power":
{"p0":16.3,"p0/core":4.6,"p0/dram":1.4,"p1":
16.7,"p1/core":4.8,"p1/dram":0.9,"total":
35.3},"powercap":{"p0":140.0,"p0/core":0.0,"p0/
dram":0.0,"p1":140.0,"p1/core":0.0,"p1/dram":0.0}}

Experimental Testbed

- Experimental node@Tinkerlab
- Intel Sandy Bridge processor
- Provide power-capping capability
- Consists of 2 processors with 32 cores

Power and Performance Prediction

- We use third-order polynomial function to determine
power usage of job j running at processors’ power-cap
limit p,.:

p(j,pc) =a+b-pe+c-p’° +d-pc°

- We use exponential regression function to determine

execution time: . 3
t(j,pc) = a- 7P+

- Total energy consumption for job j can be determined as

following: . . .
J e(j,pc) = nj - p(4,pe) - t(4, Pe) '

Power and Performance Prediction
Results

. AMG NAS Parallel Benchmark: CG
g " Model Data s " Model Data
S 80 = Experiment Data g 80 | = Experiment Data
5 70 5
g o 70 -
S wl S -
() / % %0 /
(@]
g 50 2 50
2 (0]
& 40 é 40
40 6(; 80 100 120 140 40 60 80 100 120 140
ower Cap Limit (Watt) Power Cap Limit (Watt)
DGEMM
. G XSBench
= - Model Data = 0 " Model Data
. x Experiment Dat 5
s 80 Xperiment Data S 8o * ExperimentData
g 70 5 70
" X 1 <)
£ 60 e S _—
S o 60 /
()]
50 m x
g g 50 <
> 4 o
< 40 Z 40
40 60 80 100 12 14
0 0 40 60 80 100 120 140

Power Cap Limit (Watt)

Power Cap Limit (Watt)

Power and Performance Prediction
Results (Contd.)

AMG NAS Parallel Benchmark: CG
, , , 37 , :
<]ig Model Data S 36 Model Data
3 140 \ = Experiment Data $ 35 \ = Experiment Data
= =~ 34
o 135 \ Q 33 \
£ \ £ \
£ 130 -\ 321\
c 125 c 31
\

S 120 N g 301\
3 N S 29
Bl S : 2
L w 27

105 26

40 60 80 100 120 140 40 60 80 100 120 140
Power Cap Limit (Watt) Power Cap Limit (Watt)
DGEMM XSBench

2 . . . 54 , ,
5 228 Model Data T 5o Model Data
& 240 \ « Experiment Data 3 50 ~ Experiment Data
° 2 \ Q \
E 228 \ E SN
§ 200 \ 2N\
S Te0 [\ g 42 S

O] L

S 180 AN n gg

17

04o 60 80 100 120 140 40 60 80 100 120 140

Power Cap Limit (Watt) Power Cap Limit (Watt)

Experiments at Chameleon Cluster

Experiments at Chameleon Cluster

- We want to —

- Show demand response participation model can be feasible in real-
life setup

- Use Chameleon cluster for such experiments
- Measure power and performance
- Using tools such as pycoolr, etrace2, and racadm
- Run MPI-based applications
- Using multiple nodes inside Chameleon cluster
- Implement a scheduler algorithm inside the Chameleon
- To show effectiveness of demand response model

Application Execution@Chameleon

Effect of Running Graph500 Application Effect of Running Graph500 Application
52 T T T T T 60 T T T T T
Aoa —— Processor 0 —— Processor 0
50 | At N Ao O Processor 1 e T T T T emnne Processor 1
48 \V v \ £t AA) A 4 3) %8
s / V \JLJ VY \,\/ W) o 56
g 46 [= L A
[© 54 N
AN 3 il
2 “".:L—P‘\'HJ & XX @)(x",(. (-x-xrx’K QX)(-)S" XN sp 2o X 7 MK XN X %
40 l,‘r Xx-x-x""“x-x"’ x-w(x &x"‘xx xxx,@ x\(-x-)(x-x-)(x o(-xx 50
38 48
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time (s) Time (s)
80 ——— n#6p#0 & —— n#6p#0
7 (o PR N WO S SN B — s NHBPHT TOF == N#BP#1
O [-~ n#6Op#o0 | | e w NH#GOP#O
60 n#60p#1 - %) 65 n#60p#1
S 50 ~/ A\ - O B0 P
~ i N X ;XX XX \"x é
o 40 S { © 55
% 30 é). 50 5 g X K g X s X 26 %es s 26 % XX st 50
o~ ‘:‘l“l-." e Y ﬁ) g g N g K K
20 S, .._‘;:EEI,‘E ‘n"}zn 45 *'__s*;_:-n-l P XX E3 =
] H md
10 40 = a oa”BaosaaEEgaeEna
0 35 S '
0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50

Time (s) Time (s)

Power-capping Inside Chameleon

- We initially tried to use pycoolr tool to cap power

- But faced some difficulties with RAPL availability on DELL servers
at Chameleon

- We have been using Dell RACADM tool

- To measure power usage at runtime
- To cap power at different limit

. S
Applications on Multiple Nodes

- Running MPI-based applications using existing complex
appliances on MPI protocol

- Based on the runs, we scale to large number of nodes

- Adaptive Energy and Power Consumption Prediction (AEPCP)
model for prediction to large node number

- Use the experiment results to enable demand response
- Exploiting variation in number of nodes per job
- Exploiting power capping property

Conclusions

We studied

Possibility of HPC system’s demand response participation

We proposed a demand-response model which ensures

Demand response participation through frequency variation, power
capping and processor allocation

We experimented
Real-life scientific applications on experiment cluster
Demonstrated effectiveness of our proposed approaches

Goal

Running applications on multiple nodes with power-capping
property

Show effectiveness of demand response participation on real
cluster modifying scheduling algorithm

Thank you all! Questions?

