
HOW TO ENABLE HPC SYSTEM
DEMAND RESPONSE: AN
EXPERIMENTAL STUDY
Kishwar Ahmed,
Florida International University, FL, USA

Kazutomo Yoshii
Argonne National Laboratory, IL, USA

Outline
• Motivation
• DVFS-based Demand Response
• Power-capping-based Demand Response
• Experiments on Chameleon Cluster
• Conclusions

2

What is Demand Response (DR)?
• DR: Participants reduce energy consumption

•  During transient surge in power demand
•  Other emergency events

• A DR example:
•  Extreme cold in beginning of
January 2014
•  Closure of electricity grid
•  Emergency demand response in
PJM and ERCOT Energy reduction target at PJM on January 2014

3

Demand Response Is Popular!

4

HPC System as DR Participant?
• HPC system is a major energy consumer

•  China’s 34-petaflop Tianhe-2 consumes 18MWs of power
•  Can supply small town of 20,000 homes

•  The power usage of future HPC system is projected to increase
•  Future exascale supercomputer has power capping limit
•  But not possible with current system architecture

• Demand response aware job scheduling envisioned as
possible future direction by national laboratories
[“Intelligent Job Scheduling” by Gregory A. Koenig-ORNL]

5

HPC System as DR Participant? (Contd.)
• A number of recent surveys on possibility of

supercomputer’s participation in DR program
• Patki et al. (in 2016)

•  A survey to investigate demand response participation of 11
supercomputing sites in US

•  “…SCs in the United States were interested in a tighter integration
with their ESPs to improve Demand Management (DM).”

• Bates et al. (in 2015)
•  “…the most straightforward ways that SCs can begin the process

of developing a DR capability is by enhancing existing system
software (e.g., job scheduler, resource manager)”

6

Power-capping
• What is power-capping?

•  Dynamic setting of power budget to a single server to achieve
overall HPC system power limit

• Power-capping is important
•  To achieve global power cap for the cluster
•  Intel’s Running Average Power Limit (RAPL) can combine good

properties of DVFS

• Power-capping is common in modern processors
•  Intel processors support power capping through RAPL interface
•  AMD processors’ Advanced Power Management Link (APML)

technology
•  NVIDIA GPU’s NVIDIA Management Library (NVML)

7

Related Works
• Data center and smart building demand response

•  Workload scheduling: such as load shifting in time, geographical
load balancing

•  Resource management: server consolidation, speed-scaling
• However,

•  These approaches are applicable for internet transaction-based
data center workload

•  Service time for data center workload are assumed uniform and
delay-intolerant

• HPC system demand response
•  Recently, we are proposing HPC system demand response model

•  Based on
•  dynamic voltage frequency scaling (DVFS)
•  Power capping

8

DVFS-based Demand Response

9

DVFS-based Demand Response
• Power and performance prediction model

•  Based on a polynomial regression model

• Resource provisioning
•  Determine processors’ optimal frequency to run the job

•  Job scheduling
•  Based on FCFS with possible job eviction (to ensure power bound

constraint)

10

Power and Performance Prediction

 50

 100

 150

 200

 250

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Av
er

ag
e

Po
we

r (
W

at
t)

CPU Frequency (GHz)

Quantum ESPRESSO
Gadget
Seissol
WaLBerla
PMATMUL
STREAM

 0

 20

 40

 60

 80

 100

 120

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
Ex

ec
ut

io
n

Ti
m

e
(M

in
)

CPU Frequency (GHz)

Quantum ESPRESSO
Gadget
Seissol
WaLBerla
PMATMUL
STREAM

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

En
er

gy
 C

on
su

m
pt

io
n

(K
J)

CPU Frequency (GHz)

Quantum ESPRESSO
Gadget
Seissol
WaLBerla
PMATMUL
STREAM

11

Optimal Frequency Allocation
• Determine optimal frequency such that

•  Energy consumption is optimized during demand response period
•  Highest frequency during normal periods to ensure highest

performance

12

Job Scheduler Simulator (Contd.)

job arrival

Job
Dispatcher

Waiting Jobs Running Jobs

Job
Executioner

job departure

Resource
Manager

Processor
Allocation

Power
Allocation

Application
Models

Power
Models

Performance
Models

power demand
change

Scheduling
Policies

job eviction

13

Experiment
• Workload trace collected from Parallel Workloads Archive
• Power and performance data collected from literature for

HPC applications
•  Two scheduling policies

•  Used in Linux kernel of Intel processors
•  Performance-policy

•  Always chooses maximum frequency to ensure best application runtime
•  Powersave-policy

•  Always chooses the minimum frequency to minimize the power
consumption

14

Energy vs. Performance

 200

 220

 240

 260

 280

 300

128 256 512

Av
er

ag
e

En
er

gy
 (K

J)

Number of Processors

Performance-policy
Demand-response (DR Event)
Demand-response (Non-DR Event)
Powersave-policy

 1000
 1500

 2500

 3500

 4500

 5500

128 256 512
Av

er
ag

e
Tu

rn
ar

ou
nd

 T
im

e
(s

)
Number of Processors

Performance-policy
Demand-response (DR Event)
Demand-response (Non-DR Event)
Powersave-policy

Observation: Reduced energy consumption with focus on
demand response periods

15

Impact of Demand-response Event Ratio

 230

 235

 240

 245

 250

 255

 260

 20 25 33 50 100

A
ve

ra
g

e
 E

n
e

rg
y

(K
J)

Demand-response Event Ratio (%)

Powersave-policy
Performance-policy
Demand-response

2.9%
3.4%

4.2%

5.8%

10.6%

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 20 25 33 50 100
A

ve
ra

g
e

 T
u

rn
a

ro
u

n
d

 T
im

e
 (

s)

Demand-response Event Ratio (%)

Powersave-policy
Demand-response

4.4% 5.4% 6.9% 10.7%

21.0%

Performance-policy

Observation: Average energy decreases with longer
demand response event

16

Power-capping-based Demand Response

17

Applications and Benchmarks
Benchmark Type Description Applications Application

Description

Scalable science
benchmarks

Expected to run at full scale of
the CORAL systems

HACC, Nekbone,
etc.

Compute
intensity, small
messages,
allreduce

Throughput
benchmarks

Represent large ensemble runs UMT2013,
AMG2013, SNAP
LULESH, etc.

Shock
hydrodynamics for
unstructured
meshes.

Data Centric
Benchmarks

Represent emerging data
intensive workloads – Integer
operations, instruction throughput,
indirect addressing

Graph500, Hash,
etc.

Parallel hash
benchmark

Skeleton Benchmarks Investigate various platform
characteristics including network
performance, threading
overheads, etc.

CLOMP, XSBench,
etc.

Stresses system
through memory
capacity.

18

Applications and Benchmarks (Contd.)
Benchmark
Type

Description Applications Application Description

NAS Parallel
Benchmarks

A small set of programs
designed to help
evaluate the
performance of parallel
supercomputers

IS, EP, FT, CG CG - Conjugate Gradient method

Dense-matrix
multiply
benchmarks

A simple, multi-threaded,
dense-matrix multiply
benchmark. The code is
designed to measure the
sustained, floating-point
computational rate of a
single node

MT-DGEMM,
Intel MKL
DGEMM

MT-DGEMM: The source code given
by NERSC (National Energy Research
Scientific Computing Center)

Intel MKL DGEMM: The source code
given by Intel to multiply matrix

Processor Stress
Test Utility

N/A FIRESTARTER Maximizes the energy consumption of
64-Bit x86 processors by generating
heavy load on the execution units as
well as transferring data between the
cores and multiple levels of the
memory hierarchy.

19

Measurement Tools
•  etrace2

•  Reports energy and execution time of an application
•  Relies on the Intel RAPL interface
•  Developed under DOE COOLR/ARGO project

• An example run

20

../tools/pycoolr/clr_rapl.py --limitp=140
etrace2 mpirun -n 32 bin/cg.D.32

../tools/pycoolr/clr_rapl.py --limitp=120
etrace2 mpirun -n 32 bin/cg.D.32

Output:
p0 140.0
p1 140.0

 NAS Parallel Benchmarks 3.3 -- CG Benchmark

 Size: 1500000
 Iterations: 100
 Number of active processes: 32
 Number of nonzeroes per row: 21
 Eigenvalue shift: .500E+03

 iteration ||r|| zeta
 1 0.73652606305295E-12 499.9996989885352
...
ETRACE2_VERSION=0.1
ELAPSED=1652.960293
ENERGY=91937.964940
ENERGY_SOCKET0=21333.227051
ENERGY_DRAM0=30015.779454
ENERGY_SOCKET1=15409.632036
ENERGY_DRAM1=25180.102634

Measurement Tools (Contd.)
•  pycoolr

•  Measure processor power usage and processor temperature
•  Use Intel RAPL capability to measure power usage
•  Power capping limit change capability
•  Reports data in json format

•  An example run

21

../tools/pycoolr/clr_rapl.py --limitp=140
mpirun -n 32 ./nekbone ex1

./coolrs.py > nekbone.out

{"sample":"temp","time":
1499822397.016,"node":"protos","p0":{"mean":
34.89 ,"std":1.20 ,"min":33.00 ,"max":36.00 ,"0":
33,"1":33,"2":35,"3":36,"4":35,"5":36,"6":36,"7":
34,"pkg":36}}

{"sample":"energy","time":
1499822397.017,"node":"protos","label":"run","energ
y":{"p0":57706365709,"p0/core":4262338717,"p0/
dram":62433931283,"p1":15467688771,"p1/core":
18329000806,"p1/dram":55726072673},"power":
{"p0":16.3,"p0/core":4.6,"p0/dram":1.4,"p1":
16.7,"p1/core":4.8,"p1/dram":0.9,"total":
35.3},"powercap":{"p0":140.0,"p0/core":0.0,"p0/
dram":0.0,"p1":140.0,"p1/core":0.0,"p1/dram":0.0}}

Experimental Testbed
• Experimental node@Tinkerlab

•  Intel Sandy Bridge processor
•  Provide power-capping capability
•  Consists of 2 processors with 32 cores

22

Power and Performance Prediction
• We use third-order polynomial function to determine

power usage of job j running at processors’ power-cap
limit pc:

• We use exponential regression function to determine
execution time:

•  Total energy consumption for job j can be determined as

following:

23

Power and Performance Prediction
Results

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Limit (Watt)

AMG

Model Data
Experiment Data

24

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Limit (Watt)

NAS Parallel Benchmark: CG

Model Data
Experiment Data

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Limit (Watt)

DGEMM

Model Data
Experiment Data

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Limit (Watt)

XSBench

Model Data
Experiment Data

Power and Performance Prediction
Results (Contd.)

 105
 110
 115
 120
 125
 130
 135
 140
 145
 150

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Limit (Watt)

AMG

Model Data
Experiment Data

25

 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Limit (Watt)

NAS Parallel Benchmark: CG

Model Data
Experiment Data

 170
 180
 190
 200
 210
 220
 230
 240
 250
 260

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Limit (Watt)

DGEMM

Model Data
Experiment Data

 38
 40
 42
 44
 46
 48
 50
 52
 54

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Limit (Watt)

XSBench

Model Data
Experiment Data

Experiments at Chameleon Cluster

26

Experiments at Chameleon Cluster
• We want to –

•  Show demand response participation model can be feasible in real-
life setup
•  Use Chameleon cluster for such experiments

•  Measure power and performance
•  Using tools such as pycoolr, etrace2, and racadm

•  Run MPI-based applications
•  Using multiple nodes inside Chameleon cluster

•  Implement a scheduler algorithm inside the Chameleon
•  To show effectiveness of demand response model

27

Application Execution@Chameleon

 38

 40

 42

 44

 46

 48

 50

 52

 0 5 10 15 20 25 30 35 40 45 50

Po
w

er
 (W

)

Time (s)

Effect of Running Graph500 Application

Processor 0
Processor 1

28

 48

 50

 52

 54

 56

 58

 60

 0 5 10 15 20 25 30 35 40 45 50

Te
m

pe
ra

tu
re

 (C
)

Time (s)

Effect of Running Graph500 Application

Processor 0
Processor 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40 45 50

Po
w

er
 (W

)

Time (s)

n#6p#0
n#6p#1
n#60p#0
n#60p#1

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 10 20 30 40 50

Te
m

pe
ra

tu
re

 (C
)

Time (s)

n#6p#0
n#6p#1
n#60p#0
n#60p#1

Power-capping Inside Chameleon
• We initially tried to use pycoolr tool to cap power

•  But faced some difficulties with RAPL availability on DELL servers
at Chameleon

• We have been using Dell RACADM tool
•  To measure power usage at runtime
•  To cap power at different limit

29

Applications on Multiple Nodes
• Running MPI-based applications using existing complex

appliances on MPI protocol
• Based on the runs, we scale to large number of nodes

•  Adaptive Energy and Power Consumption Prediction (AEPCP)
model for prediction to large node number

• Use the experiment results to enable demand response
•  Exploiting variation in number of nodes per job
•  Exploiting power capping property

30

Conclusions
• We studied

•  Possibility of HPC system’s demand response participation

• We proposed a demand-response model which ensures
•  Demand response participation through frequency variation, power

capping and processor allocation

• We experimented
•  Real-life scientific applications on experiment cluster
•  Demonstrated effectiveness of our proposed approaches

• Goal
•  Running applications on multiple nodes with power-capping

property
•  Show effectiveness of demand response participation on real

cluster modifying scheduling algorithm

31

Thank you all! Questions?

32

