
A POWER CAPPING APPROACH
FOR HPC SYSTEM DEMAND
RESPONSE
Kishwar Ahmed, Research Aide
MCS Division
Argonne National Laboratory, IL, USA

Mentor: Kazutomo Yoshii
MCS Division
Argonne National Laboratory, IL, USA

Outline
• Motivation

•  Why demand response is important?
•  HPC system as demand response participant?
•  Related works

• Applications, Tools and Testbed
• Model and Simulator

•  How we model HPC demand response participation?
•  How we simulate the proposed model?
•  Cooling energy model
•  How we compare our model with existing policies?

• Conclusions

2

What is Demand Response (DR)?
• Overall objective: Enable an overall HPC system

demand response participation through job scheduling
and resource allocation (e.g., power capping)

• DR: Participants reduce energy consumption
•  During transient surge in power demand
•  Other emergency events

• A DR example:
•  Extreme cold in beginning of
January 2014
•  Closure of electricity grid
•  Emergency demand response in
PJM and ERCOT Energy reduction target at PJM on January 2014

3

Demand Response Getting Popular!

4

HPC System as DR Participant?
• HPC system is a major energy consumer

•  China’s 34-petaflop Tianhe-2 consumes 18MWs of power
•  Can supply small town of 20,000 homes

•  The power usage of future HPC system is projected to increase
•  Future exascale supercomputer has power capping limit
•  But not possible with current system architecture

• Demand response aware job scheduling envisioned as
possible future direction by national laboratories
[“Intelligent Job Scheduling” by Gregory A. Koenig]

5

HPC System as DR Participant? (Contd.)
• A number of recent surveys on possibility of

supercomputer’s participation in DR program
• Patki et al. (in 2016)

•  A survey to investigate demand response participation of 11
supercomputing sites in US

•  “…SCs in the United States were interested in a tighter integration
with their ESPs to improve Demand Management (DM).”

• Bates et al. (in 2015)
•  “…the most straightforward ways that SCs can begin the process

of developing a DR capability is by enhancing existing system
software (e.g., job scheduler, resource manager)”

6

Power Capping
• What is power capping?

•  Dynamic setting of power budget to a single server

• Power capping is important
•  To achieve global power cap for the cluster
•  Intel’s Running Average Power Limit (RAPL) can combine good

properties of DVFS

• Power capping is common in modern processors
•  Intel processors support power capping through RAPL interface
•  Intel Node Manager, an Intel server firmware feature, gives

capability to limit power at the system, processor and memory level

7

Related Works
•  Job scheduling and resource provisioning in HPC

•  [Yang et al.] Reduce energy cost through executing
•  Low power-consuming jobs during on-peak periods
•  High power-consuming jobs during off-peak periods

• Green HPC
•  Reducing brown energy consumption

•  GreenPar: adopts different job scheduling strategies (e.g., dynamic job
migration, resource allocation)

• Energy saving techniques in HPC system
•  CPU MISER

•  DVFS-based power management scheme
•  Adagio

•  Exploits variation in the energy consumption during computation and
communication phases

8

Related Works (Contd.)
•  Data center and smart building demand response

•  Workload scheduling: such as load shifting in time, geographical load
balancing

•  Resource management: server consolidation, speed-scaling
•  However,

•  These approaches are applicable for internet transaction-based data
center workload

•  Service time for data center workload are assumed uniform and delay-
intolerant

•  HPC system demand response
•  Recently, we proposed an HPC system demand response model

•  However the current work,
•  Does not consider real-life applications running on clusters
•  Considers DVFS, not power capping
•  Does not perform job allocation to processors
•  Does not consider cooling energy model

9

Outline
• Motivation

•  Why demand response is important?
•  HPC system as demand response participant?
•  Existing works

• Applications, Tools and Testbed
• Model and Simulator

•  How we model HPC demand response participation?
•  How we simulate the proposed model?
•  Cooling energy model
•  How we compare our model with existing policies?

• Conclusions

10

Applications and Benchmarks
Benchmark Type Description Applications Application

Description

Scalable science
benchmarks

Expected to run at full scale of
the CORAL systems

HACC, Nekbone,
etc.

Compute
intensity, small
messages,
allreduce

Throughput
benchmarks

Represent large ensemble runs UMT2013,
AMG2013, SNAP
LULESH, etc.

Shock
hydrodynamics for
unstructured
meshes.

Data Centric
Benchmarks

Represent emerging data
intensive workloads – Integer
operations, instruction throughput,
indirect addressing

Graph500, Hash,
etc.

Parallel hash
benchmark

Skeleton Benchmarks Investigate various platform
characteristics including network
performance, threading
overheads, etc.

CLOMP, XSBench,
etc.

Stresses system
through memory
capacity.

11

Applications and Benchmarks (Contd.)
Benchmark
Type

Description Applications Application Description

NAS Parallel
Benchmarks

A small set of programs
designed to help
evaluate the
performance of parallel
supercomputers

IS, EP, FT, CG CG - Conjugate Gradient method

Dense-matrix
multiply
benchmarks

A simple, multi-threaded,
dense-matrix multiply
benchmark. The code is
designed to measure the
sustained, floating-point
computational rate of a
single node

MT-DGEMM,
Intel MKL
DGEMM

MT-DGEMM: The source code given
by NERSC (National Energy Research
Scientific Computing Center)

Intel MKL DGEMM: The source code
given by Intel to multiply matrix

Processor Stress
Test Utility

N/A FIRESTARTER Maximizes the energy consumption of
64-Bit x86 processors by generating
heavy load on the execution units as
well as transferring data between the
cores and multiple levels of the
memory hierarchy.

12

Measurement Tools
•  etrace2

•  Reports energy and execution time of an application
•  Relies on the Intel RAPL interface
•  Developed under DOE COOLR/ARGO project
•  Used inside Chameleon cluster

• An example run

13

../tools/pycoolr/clr_rapl.py --limitp=140
etrace2 mpirun -n 32 bin/cg.D.32

../tools/pycoolr/clr_rapl.py --limitp=120
etrace2 mpirun -n 32 bin/cg.D.32

Output:
p0 140.0
p1 140.0

 NAS Parallel Benchmarks 3.3 -- CG Benchmark

 Size: 1500000
 Iterations: 100
 Number of active processes: 32
 Number of nonzeroes per row: 21
 Eigenvalue shift: .500E+03

 iteration ||r|| zeta
 1 0.73652606305295E-12 499.9996989885352
...
ETRACE2_VERSION=0.1
ELAPSED=1652.960293
ENERGY=91937.964940
ENERGY_SOCKET0=21333.227051
ENERGY_DRAM0=30015.779454
ENERGY_SOCKET1=15409.632036
ENERGY_DRAM1=25180.102634

Measurement Tools (Contd.)
•  pycoolr

•  Measure processor power usage and processor temperature
•  Use Intel RAPL capability to measure power usage
•  Power capping limit change capability
•  Reports data in json format

•  An example run

14

../tools/pycoolr/clr_rapl.py --limitp=140
mpirun -n 32 ./nekbone ex1

./coolrs.py > nekbone.out

{"sample":"temp","time":
1499822397.016,"node":"protos","p0":{"mean":
34.89 ,"std":1.20 ,"min":33.00 ,"max":36.00 ,"0":
33,"1":33,"2":35,"3":36,"4":35,"5":36,"6":36,"7":
34,"pkg":36}}

{"sample":"energy","time":
1499822397.017,"node":"protos","label":"run","energ
y":{"p0":57706365709,"p0/core":4262338717,"p0/
dram":62433931283,"p1":15467688771,"p1/core":
18329000806,"p1/dram":55726072673},"power":
{"p0":16.3,"p0/core":4.6,"p0/dram":1.4,"p1":
16.7,"p1/core":4.8,"p1/dram":0.9,"total":
35.3},"powercap":{"p0":140.0,"p0/core":0.0,"p0/
dram":0.0,"p1":140.0,"p1/core":0.0,"p1/dram":0.0}}

Experimental Testbeds
•  Chameleon cluster

•  An experimental setup for large-scale cloud research
•  Deployed at the University of Chicago and the Texas Advanced

Computing Center
•  Hosts around 650 multi-core cloud nodes
•  Used 6-node cluster to run applications
•  However, power capping experiments still not supported; limited by

Dell server’s BIOS
•  Experimental node@Tinkerlab

•  Intel Sandy Bridge processor
•  Provide power-capping capability
•  Consists of 2 processors with 32 cores

•  JLSE@ANL
•  We ran applications on multiple nodes and measured power and

temperature data

15

Experiment Results@Tinkerlab

 35
 40
 45
 50
 55
 60
 65
 70
 75
 80

40 60 80 100 120 140 160

Po
w

er
 (W

)

Power Capping (W)

NPB (CG, Size C): Processor 0

16

 35
 40
 45
 50
 55
 60
 65
 70
 75

40 60 80 100 120 140 160

Po
w

er
 (W

)
Power Capping (W)

NPB (CG, Size C): Processor 1

 20

 25

 30

 35

 40

40 60 80 100 120 140 160

Ex
ec

ut
io

n
Ti

m
e

(s
)

Power Capping (W)

NPB benchmark (CG, Size: C)

 35
 40
 45
 50
 55
 60
 65
 70
 75

40 60 80 100

Po
w

er
 (W

)

Power Capping (W)

NPB (CG, Size D): Processor 1

 35
 40
 45
 50
 55
 60
 65
 70
 75

40 60 80 100

Po
w

er
 (W

)

Power Capping (W)

NPB (CG, Size D): Processor 0

 1650
 1700
 1750
 1800
 1850
 1900
 1950
 2000

40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

(s
)

Power Capping (W)

NPB benchmark (CG, Size: D)

 35
 40
 45
 50
 55
 60
 65
 70
 75
 80

40 60 80 100 120 140 160

Po
w

er
 (W

)

Power Capping (W)

Nekbone: Processor 0

 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

40 60 80 100 120 140 160

Po
w

er
 (W

)

Power Capping (W)

Nekbone: Processor 1

 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

40 60 80 100 120 140 160

Ex
ec

ut
io

n
Ti

m
e

(s
)

Power Capping (W)

Nekbone

Experiment Results@Tinkerlab (Contd.)

 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

40 60 80 100 120 140

Po
w

er
 (W

)

Power Capping (W)

XSBench: Processor 0

17

 35

 40

 45

 50

 55

 60

40 60 80 100 120 140

Po
w

er
 (W

)

Power Capping (W)

XSBench: Processor 1

 38
 40
 42
 44
 46
 48
 50
 52
 54

40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(s
)

Power Capping (W)

XSBench

 35
 40
 45
 50
 55
 60
 65
 70

40 60 80 100 120 140

Po
w

er
 (W

)

Power Capping (W)

DGEMM: Processor 0

 35
 40
 45
 50
 55
 60
 65
 70

40 60 80 100 120 140

Po
w

er
 (W

)

Power Capping (W)

DGEMM: Processor 1

 170
 180
 190
 200
 210
 220
 230
 240
 250
 260

40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(s
)

Power Capping (W)

DGEMM

 40
 45
 50
 55
 60
 65
 70

40 60 80 100 120 140

Po
w

er
 (W

)

Power Capping (W)

AMG: Processor 0

 35
 40
 45
 50
 55
 60
 65
 70
 75

40 60 80 100 120 140

Po
w

er
 (W

)

Power Capping (W)

AMG: Processor 1

 110
 115
 120
 125
 130
 135
 140
 145

40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(s
)

Power Capping (W)

AMG

Experiment Results@Chameleon

 38

 40

 42

 44

 46

 48

 50

 52

 0 5 10 15 20 25 30 35 40 45 50

Po
w

er
 (W

)

Time (s)

Effect of Running Graph500 Application

Processor 0
Processor 1

18

 48

 50

 52

 54

 56

 58

 60

 0 5 10 15 20 25 30 35 40 45 50

Te
m

pe
ra

tu
re

 (C
)

Time (s)

Effect of Running Graph500 Application

Processor 0
Processor 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40 45 50

Po
w

er
 (W

)

Time (s)

n#6p#0
n#6p#1
n#60p#0
n#60p#1

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 10 20 30 40 50

Te
m

pe
ra

tu
re

 (C
)

Time (s)

n#6p#0
n#6p#1
n#60p#0
n#60p#1

Outline
• Motivation

•  Why demand response is important?
•  HPC system as demand response participant?
•  Existing works

• Applications, Tools and Testbed
• Model and Simulator

•  How we model HPC demand response participation?
•  How we simulate the proposed model?
•  Cooling energy model
•  How we compare our model with existing policies?

• Conclusions

19

Demand Response Model
• Power and performance prediction model

•  Based on regression models for power capping

• Resource provisioning
•  Determine processors’ optimal power allocation to run the job
•  Determine optimal set of processors with thermal-awareness

•  Job scheduling
•  Based on FCFS with possible job eviction (to ensure power bound

constraint)

20

Power and Performance Prediction
•  We use third-order polynomial function to determine power

usage of job j running at processors’ power-cap limit pc:

•  We use exponential regression function to determine execution
time:

•  Total energy consumption for job j can be determined as

following:

•  Theorem: Minimization of the e(j, pc) is a convex optimization
•  Proof outline: Exponential and polynomial functions are convex

21

Power and Performance Prediction
Results

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Limit (Watt)

AMG

Model Data
Experiment Data

22

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Limit (Watt)

NAS Parallel Benchmark: CG

Model Data
Experiment Data

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Limit (Watt)

DGEMM

Model Data
Experiment Data

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Limit (Watt)

XSBench

Model Data
Experiment Data

Power and Performance Prediction
Results (Contd.)

 105
 110
 115
 120
 125
 130
 135
 140
 145
 150

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Limit (Watt)

AMG

Model Data
Experiment Data

23

 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Limit (Watt)

NAS Parallel Benchmark: CG

Model Data
Experiment Data

 170
 180
 190
 200
 210
 220
 230
 240
 250
 260

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Limit (Watt)

DGEMM

Model Data
Experiment Data

 38
 40
 42
 44
 46
 48
 50
 52
 54

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Limit (Watt)

XSBench

Model Data
Experiment Data

Job Scheduling and Resource
Provisioning

24

Job Scheduler Simulator
• We use our own scheduler simulator developed earlier

•  Trace-driven capability
•  Flexibility to incorporate new scheduling functions, power-aware

methods, as well as demand response models

• Based on Simian
•  An open-source, process-oriented parallel discrete-event

simulation engine
•  Some unique features

•  A minimalistic design (only 500 lines of code base)
•  For some models, outperformed simulators using compiled languages

such as C or C++
•  Recent significant effort on models based on Simian

•  For example, GPU models (Chapuis et al.), interconnection models (Ahmed et
al.)

25

Job Scheduler Simulator (Contd.)

26

Job
Dispatcher

Job
Executioner

Execution
Policies

Waiting Jobs Running Jobs

Job
Arrival

Job
Departure

Job
Eviction

Application
Models

Power
Models

Performance
Models

Resource
Manager

Processor
Allocation

Power
Allocation

Power
Demand
Change

Job Scheduler Simulator (Contd.)
• Validated against PYSS

•  A python-based scheduler simulator for HPC workload
•  Has been used to study various scheduling algorithms in HPC

system

• Collected workload trace
•  Parallel Workloads Archive
•  Contains information such as job start time, job run time, number of

requested processors, etc.

 0

 100

 200

 300

 400

 500

 600

 0 1e+06 2e+06 3e+06 4e+06 5e+06

Av
ai

la
bl

e
Pr

oc
es

so
rs

Time (s)

PYSS
Our Simulator 0

 10

 20

 30

 40

 50

 60

 0 1e+06 2e+06 3e+06 4e+06 5e+06

Q
ue

ue
 L

en
gt

h

Time (s)

PYSS
Our Simulator

27

Energy vs. Performance
• Workload trace collected from Parallel Workloads Archive
• Power and performance data collected after running real-

life HPC applications on clusters
• Resource allocation policy

•  Performance-mode
•  Always chooses maximum power cap limit to ensure best application

runtime

28

 50000

 55000

 60000

 65000

 70000

25 50 75 100Av
er

ag
e

En
er

gy
 C

on
su

m
pt

io
n

(J
)

Demand Response Events Ratio (%)

Demand-response
Performance-mode

 0

 20

 40

 60

 80

 100

 120

25 50 75 100

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Demand Response Events Ratio (%)

Demand-response
Performance-mode

Thermal-aware Job Placement
• Determine subset of processors to place the jobs
• Select the cooler processors to execute the jobs
• Assume xp ε {0, 1} denotes the selection of processor p

•  xp = 1 means processor p is selected
•  xp = 0, otherwise

•  Jobs are distributed to processors according to following
optimization:

• Where,
•  Tp denotes temperature of processor p
•  Nr denotes number of requested processors
•  Nt denotes number of available processors

29

Power Prediction Results
• How to relate temperature to processor power

consumption?

30

 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000

 69 69.5 70 70.5 71 71.5 72

R
ou

nd
 P

er
 M

in
ut

e
(R

PM
)

Temperature (C)

Model Data
Empirical Data

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3000 4000 5000 6000 7000 8000 9000

Fa
n

Po
w

er
 (W

at
t)

Round Per Minute (RPM)

0.26-2e-4XRPM+5e-8XRPM2

Thermal-aware vs. Thermal-unaware
•  Thermal-aware: Determines processor subset using our

algorithm
•  Thermal-unaware: Places jobs to first available

processors

31

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1 2 3 4Av
er

ag
e

Fa
n

Po
w

er
 P

er
 J

ob
 (W

)

Number of Processors (Times)

Thermal-aware
Thermal-unaware

Cooling System Model
• Determine optimal thermostat temperature during demand

response periods
•  The cooling power consumption is formulated as

• Coefficient of Performance (CoP) depends on supply
temperature (Tsup)

•  The power change through thermostat temperature
change

32

Cooling System Model (Contd.)
•  Inlet (tin) temperature for each processor depends on

•  supply air temperature vector and power consumption for
processors

•  Inlet temperature to each processor should be within
redline threshold temperature (tred)

•  The optimization for cooling energy consumption can be
formulated as following

33

Conclusions
•  We studied

•  Possibility of HPC system’s demand response participation
•  We proposed a demand-response model which ensures

•  Demand response participation through power capping and processor
allocation

•  Energy reduction in processor, memory and cooling system
•  We experimented

•  Real-life scientific applications on experiment cluster
•  Demonstrated effectiveness of our proposed approaches

•  Difficulty
•  Chameleon cluster experiments could not be completed due to BIOS

issue
•  Future works

•  Experiments on cooling energy model
•  A prediction model for prediction of unknown HPC applications’

characteristics (e.g., power usage)

34

Thank you all! Questions?

35

Many thanks to –
Kazutomo Yoshii*, Jason Liu**, Xingfu Wu*,
Misbah Mubarak*, Rob Ross*

* MCS, Argonne National Laboratory
** SCIS, Florida International University

