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What is Demand Response (DR)? 
• Overall objective: Enable an overall HPC system 

demand response participation through job scheduling 
and resource allocation (e.g., power capping) 

• DR: Participants reduce energy consumption 
•  During transient surge in power demand 
•  Other emergency events 

• A DR example: 
•  Extreme cold in beginning of  
January 2014 
•  Closure of electricity grid 
•  Emergency demand response in  
PJM and ERCOT  Energy reduction target at PJM on January 2014 
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Demand Response Getting Popular! 
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HPC System as DR Participant? 
• HPC system is a major energy consumer 

•  China’s 34-petaflop Tianhe-2 consumes 18MWs of power 
•  Can supply small town of 20,000 homes 

•  The power usage of future HPC system is projected to increase  
•  Future exascale supercomputer has power capping limit 
•  But not possible with current system architecture 

• Demand response aware job scheduling envisioned as 
possible future direction by national laboratories 
[“Intelligent Job Scheduling” by Gregory A. Koenig]  
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HPC System as DR Participant? (Contd.) 
• A number of recent surveys on possibility of 

supercomputer’s participation in DR program 
• Patki et al. (in 2016) 

•  A survey to investigate demand response participation of 11 
supercomputing sites in US 

•  “…SCs in the United States were interested in a tighter integration 
with their ESPs to improve Demand Management (DM).” 

• Bates et al. (in 2015) 
•  “…the most straightforward ways that SCs can begin the process 

of developing a DR capability is by enhancing existing system 
software (e.g., job scheduler, resource manager)” 
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Power Capping 
• What is power capping? 

•  Dynamic setting of power budget to a single server 

• Power capping is important 
•  To achieve global power cap for the cluster 
•  Intel’s Running Average Power Limit (RAPL) can combine good 

properties of DVFS 

• Power capping is common in modern processors 
•  Intel processors support power capping through RAPL interface 
•  Intel Node Manager, an Intel server firmware feature, gives 

capability to limit power at the system, processor and memory level 
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Related Works 
•  Job scheduling and resource provisioning in HPC 

•  [Yang et al.] Reduce energy cost through executing  
•  Low power-consuming jobs during on-peak periods 
•  High power-consuming jobs during off-peak periods 

• Green HPC 
•   Reducing brown energy consumption 

•  GreenPar: adopts different job scheduling strategies (e.g., dynamic job 
migration, resource allocation) 

• Energy saving techniques in HPC system 
•  CPU MISER 

•  DVFS-based power management scheme 
•  Adagio 

•  Exploits variation in the energy consumption during computation and 
communication phases 
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Related Works (Contd.) 
•  Data center and smart building demand response 

•  Workload scheduling: such as load shifting in time, geographical load 
balancing 

•  Resource management: server consolidation, speed-scaling 
•  However,  

•  These approaches are applicable for internet transaction-based data 
center workload  

•  Service time for data center workload are assumed uniform and delay-
intolerant 

•  HPC system demand response 
•  Recently, we proposed an HPC system demand response model 

•  However the current work, 
•  Does not consider real-life applications running on clusters 
•  Considers DVFS, not power capping 
•  Does not perform job allocation to processors 
•  Does not consider cooling energy model 

9 



Outline 
• Motivation 

•  Why demand response is important? 
•  HPC system as demand response participant? 
•  Existing works 

• Applications, Tools and Testbed 
• Model and Simulator 

•  How we model HPC demand response participation? 
•  How we simulate the proposed model? 
•  Cooling energy model 
•  How we compare our model with existing policies? 

• Conclusions  

10 



Applications and Benchmarks 
Benchmark Type Description Applications Application 

Description 

Scalable science 
benchmarks 

Expected to run at full scale of 
the CORAL systems 

HACC, Nekbone, 
etc. 

Compute 
intensity, small 
messages, 
allreduce 

Throughput 
benchmarks  

Represent large ensemble runs UMT2013, 
AMG2013, SNAP 
LULESH, etc.  

Shock 
hydrodynamics for 
unstructured 
meshes. 

Data Centric 
Benchmarks 

Represent emerging data 
intensive workloads – Integer 
operations, instruction throughput, 
indirect addressing 

Graph500, Hash, 
etc. 

Parallel hash 
benchmark 

Skeleton Benchmarks  Investigate various platform 
characteristics including network 
performance, threading 
overheads, etc. 

CLOMP, XSBench, 
etc. 

Stresses system 
through memory 
capacity. 
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Applications and Benchmarks (Contd.) 
Benchmark 
Type 

Description Applications Application Description 

NAS Parallel 
Benchmarks 

A small set of programs 
designed to help 
evaluate the 
performance of parallel 
supercomputers 

IS, EP, FT, CG CG - Conjugate Gradient method 

Dense-matrix 
multiply 
benchmarks 

A simple, multi-threaded, 
dense-matrix multiply 
benchmark. The code is 
designed to measure the 
sustained, floating-point 
computational rate of a 
single node 

MT-DGEMM, 
Intel MKL 
DGEMM 

MT-DGEMM: The source code given 
by NERSC (National Energy Research 
Scientific Computing Center) 
 
Intel MKL DGEMM: The source code 
given by Intel to multiply matrix 
 

Processor Stress 
Test Utility 

N/A FIRESTARTER Maximizes the energy consumption of 
64-Bit x86 processors by generating 
heavy load on the execution units as 
well as transferring data between the 
cores and multiple levels of the 
memory hierarchy. 
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Measurement Tools 
•  etrace2 

•  Reports energy and execution time of an application 
•  Relies on the Intel RAPL interface 
•  Developed under DOE COOLR/ARGO project  
•  Used inside Chameleon cluster 

• An example run 
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../tools/pycoolr/clr_rapl.py --limitp=140 
etrace2 mpirun -n 32 bin/cg.D.32 
 
../tools/pycoolr/clr_rapl.py --limitp=120 
etrace2 mpirun -n 32 bin/cg.D.32 

Output: 
p0 140.0 
p1 140.0 
 
 NAS Parallel Benchmarks 3.3 -- CG Benchmark 
 
 Size:    1500000 
 Iterations:   100 
 Number of active processes:    32 
 Number of nonzeroes per row:       21 
 Eigenvalue shift: .500E+03 
 
   iteration           ||r||                 zeta 
        1       0.73652606305295E-12   499.9996989885352 
... 
# ETRACE2_VERSION=0.1 
# ELAPSED=1652.960293 
# ENERGY=91937.964940 
# ENERGY_SOCKET0=21333.227051 
# ENERGY_DRAM0=30015.779454 
# ENERGY_SOCKET1=15409.632036 
# ENERGY_DRAM1=25180.102634 



Measurement Tools (Contd.) 
•  pycoolr 

•  Measure processor power usage and processor temperature 
•  Use Intel RAPL capability to measure power usage  
•  Power capping limit change capability 
•  Reports data in json format  

•   An example run     
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../tools/pycoolr/clr_rapl.py --limitp=140 
mpirun -n 32 ./nekbone ex1 
 
./coolrs.py > nekbone.out 

{"sample":"temp","time":
1499822397.016,"node":"protos","p0":{"mean":
34.89 ,"std":1.20 ,"min":33.00 ,"max":36.00 ,"0":
33,"1":33,"2":35,"3":36,"4":35,"5":36,"6":36,"7":
34,"pkg":36}} 
 
{"sample":"energy","time":
1499822397.017,"node":"protos","label":"run","energ
y":{"p0":57706365709,"p0/core":4262338717,"p0/
dram":62433931283,"p1":15467688771,"p1/core":
18329000806,"p1/dram":55726072673},"power":
{"p0":16.3,"p0/core":4.6,"p0/dram":1.4,"p1":
16.7,"p1/core":4.8,"p1/dram":0.9,"total":
35.3},"powercap":{"p0":140.0,"p0/core":0.0,"p0/
dram":0.0,"p1":140.0,"p1/core":0.0,"p1/dram":0.0}} 



Experimental Testbeds 
•  Chameleon cluster 

•  An experimental setup for large-scale cloud research 
•  Deployed at the University of Chicago and the Texas Advanced 

Computing Center 
•  Hosts around 650 multi-core cloud nodes 
•  Used 6-node cluster to run applications 
•  However, power capping experiments still not supported; limited by 

Dell server’s BIOS 
•  Experimental node@Tinkerlab 

•  Intel Sandy Bridge processor 
•  Provide power-capping capability 
•  Consists of 2 processors with 32 cores 

•  JLSE@ANL 
•  We ran applications on multiple nodes and measured power and 

temperature data 
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Experiment Results@Tinkerlab 
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Experiment Results@Tinkerlab (Contd.) 
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Experiment Results@Chameleon 
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Demand Response Model 
• Power and performance prediction model 

•  Based on regression models for power capping 

• Resource provisioning 
•  Determine processors’ optimal power allocation to run the job 
•  Determine optimal set of processors with thermal-awareness 

•  Job scheduling 
•  Based on FCFS with possible job eviction (to ensure power bound 

constraint) 
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Power and Performance Prediction 
•  We use third-order polynomial function to determine power 

usage of job j running at processors’ power-cap limit pc: 

•  We use exponential regression function to determine execution 
time: 

 
•  Total energy consumption for job j can be determined as 

following: 

•  Theorem: Minimization of the e(j, pc) is a convex optimization 
•  Proof outline: Exponential and polynomial functions are convex 
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Power and Performance Prediction 
Results 
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Power and Performance Prediction 
Results (Contd.) 
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Job Scheduling and Resource 
Provisioning 
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Job Scheduler Simulator 
• We use our own scheduler simulator developed earlier  

•  Trace-driven capability 
•  Flexibility to incorporate new scheduling functions, power-aware 

methods, as well as demand response models 

• Based on Simian 
•  An open-source, process-oriented parallel discrete-event 

simulation engine 
•  Some unique features 

•  A minimalistic design (only 500 lines of code base) 
•  For some models, outperformed simulators using compiled languages 

such as C or C++ 
•  Recent significant effort on models based on Simian 

•  For example, GPU models (Chapuis et al.), interconnection models (Ahmed et 
al.) 
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Job Scheduler Simulator (Contd.) 
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Job Scheduler Simulator (Contd.) 
• Validated against PYSS 

•  A python-based scheduler simulator for HPC workload 
•  Has been used to study various scheduling algorithms in HPC 

system  

• Collected workload trace 
•  Parallel Workloads Archive 
•  Contains information such as job start time, job run time, number of 

requested processors, etc. 
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Energy vs. Performance 
• Workload trace collected from Parallel Workloads Archive 
• Power and performance data collected after running real-

life HPC applications on clusters 
• Resource allocation policy  

•  Performance-mode 
•  Always chooses maximum power cap limit to ensure best application 

runtime 
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Thermal-aware Job Placement 
• Determine subset of processors to place the jobs 
• Select the cooler processors to execute the jobs 
• Assume xp ε {0, 1} denotes the selection of processor p 

•  xp = 1 means processor p is selected 
•  xp = 0, otherwise  

•  Jobs are distributed to processors according to following 
optimization: 

• Where,  
•  Tp denotes temperature of processor p 
•  Nr denotes number of requested processors  
•  Nt denotes number of available processors 
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Power Prediction Results 
• How to relate temperature to processor power 

consumption?  
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Thermal-aware vs. Thermal-unaware 
•  Thermal-aware: Determines processor subset using our 

algorithm 
•  Thermal-unaware: Places jobs to first available 

processors   
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Cooling System Model 
• Determine optimal thermostat temperature during demand 

response periods 
•  The cooling power consumption is formulated as 

• Coefficient of Performance (CoP) depends on supply 
temperature (Tsup) 

•  The power change through thermostat temperature 
change 

32 



Cooling System Model (Contd.) 
•  Inlet (tin) temperature for each processor depends on  

•  supply air temperature vector and power consumption for 
processors 

•  Inlet temperature to each processor should be within 
redline threshold temperature (tred) 

•  The optimization for cooling energy consumption can be 
formulated as following  
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Conclusions 
•  We studied 

•  Possibility of HPC system’s demand response participation 
•  We proposed a demand-response model which ensures 

•  Demand response participation through power capping and processor 
allocation 

•  Energy reduction in processor, memory and cooling system 
•  We experimented 

•  Real-life scientific applications on experiment cluster 
•  Demonstrated effectiveness of our proposed approaches 

•  Difficulty 
•  Chameleon cluster experiments could not be completed due to BIOS 

issue 
•  Future works 

•  Experiments on cooling energy model 
•  A prediction model for prediction of unknown HPC applications’ 

characteristics (e.g., power usage)  
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Thank you all! Questions? 
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