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Parallel Discrete Event Simula2on
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Discrete-Event Simulation (DES)

• Mimic opera+ons over discrete instances of +me (events)

Event
1. Time stamp
2. Handler
3. Data

Event
1. Time stamp
2. Handler
3. Data

Event
1. Time stamp
2. Handler
3. Data

. . .
Current Time

Event Queue Data 
Structure

Handler
• Process event
• Create/insert new 

event in Event 
Queue

Handler
• Process event
• Create/insert new 

event in Event 
Queue

. . .

Main Loop:
While Event Queue not empty

Pop next event
Advance simulation time
Handle the event (call Handler) 4



Parallel Discrete-Event Simulation (PDES)
• Run DES in parallel
• Two purposes:

• Reduce simulation time
• Increase modeling size

• More specifically:
• Model large and complex systems
• Design and parameter exploration
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Spatial Decomposition

• Divide simulation model into sub-models that can be distributed to 
different processors
• Each sub-model is called a Logical Process (LP)

• Each LP maintains its own event-list
• No global simulation clock!

• LPs communicate via explicit messages
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Spatial Decomposition
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Spatial Decomposition (Contd.)
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At each LP, the events shall be processed in non-
decreasing timestamp order!



Parallel Simula+on Synchroniza+on

• An algorithm needed to ensure causality constraint (processing events in 
timestamp order)
• Fundamental problem for PDES

• CMB algorithm
• R.E. Bryant, MIT Technical Report, 1977
• Jayadev Misra and K. Mani Chandy , IEEE Transactions on Software Engineering, 1979
• Conservative synchronization: execute an event only ensuring that causality error 

never happens

• Time Warp Algorithm:
• David Jefferson, ACM Transactions on Programming Languages and Systems, 1985 
• Optimistic synchronization: rolling back LP upon causality error (via reverse 

computation) 
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Performance Prediction Toolkit (PPT)
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Codesign Modeling to Predict Performance of 
SW/Computa8onal Methods on Novel HW Pla=orms

Key idea à Explore SW and HW design 
spaces and assess algorithmic variations 

Model of Computing
Computer

Input

Software

Hardware

Output
Time

Energy

Predicted performance 
measured

Design spaces 11



Codesign Performance Modeling

• Hardware resources are modeled as Entities
• Compute nodes, interconnection networks, processors, memory systems 

• Applications and algorithms are modeled as Processes running on 
entities 
• Processes independently advance in simulation time (sleep for computation 

or resource usage) 

• Selective refinement of modeling details based on suspected 
performance bottlenecks both in hardware and software
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Selec%ve Refinement Modeling

• Goal: maintain modeling scalability for large, complex systems 
• We are interested in performance of parallel applications (physics code) 

running on petascale and exascale systems 

• To find the “right” level of modeling details (just enough to answer 
the research questions) is an iterative process: 

1. Start from coarse-level models
2. Gather experiment results 
3. Identify components as potential performance bottlenecks
4. Replace those components by plugging in more refined models 
5. Go to #2 until satisfied 
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PPT Model Architecture
• Simian – parallel discrete-event simulation engine
• Configurable hardware models: clusters, 

compute nodes, processes/cores, 
accelerators (GPU), interconnect models, 
parallel file systems 
• Middleware models: MPI, OpenMP
• Application library: benchmark applications 

(PolyBenchSim, ParboilSim), 
production applications (SNAPSim, 
SPHSim, SpecTADSim) 
• Data: application instrument data (PolyBench, SNAP, SPH, CloverLeaf), 

hardware specs data (Mustang, Haswell, IvyBridge, SandyBridge, Vortex), 
communication data (DOE mini-apps) 
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Large-Scale Scientific Applications (SNAP, TAD, MC, ..) 
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Simian: Parallel Discrete Event Simulation 
Engine
• Open source, general purpose parallel discrete-

event library 
• Independent implementation in two interpreted 

languages: Python and Lua, with optional C libraries 
(such as MPI) 
• Minimalistic design: LOC=500 with 8 common 

methods 
• Simulation code can be Just-In-Time (JIT) compiled 

to achieve very competitive event-rates, 
outperforming C++ implementation in some cases 
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Performance Comparison

• La-PDES benchmark: has 8 test case scenarios with 12 parameters

• 2 Simian implementations and MiniSSF (C++)

• Simian scales very well with available MPI ranks (upto 1024 ranks)

• SimianLUA performs 3x beNer than MiniSSF C++ engine

On a mid-size cluster of 1024 core
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Interconnection Network Models
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Interconnec(on Network

• Interconnect is a critical component of 
extreme-scale HPC architectural design
• Interconnection network model is essential 

for performance evaluation studies
• Need to be scalable, efficient, and accurate

• Common interconnect topologies
• Torus (e.g., Cray’s Gemini)
• Dragonfly (e.g., Cray’s Aries)
• Fat-tree (e.g., Mellanox Infiniband)
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Exis%ng Interconnec%on Network Models
• BigSim (UIUC): for performance prediction of large-scale parallel machines 

(with relatively simple interconnect models), implemented in Charm++ and 
MPI, shown to scale up to 64K ranks intially

• xSim (ORNL): scale to 128M MPI ranks using PDES with lightweight 
threads, include various interconnect topologies (high-level models, e.g., 
network congestion omitted) 

• SST and SST Macro (SNL): a comprehensive simulation framework, 
separate implementation, one intended with cycle-level accuracy and the 
other at coarser level for scale 

• CODES (ANL): contains interconnect models and storage systems, built on 
ROSS using reverse computation simulation that also scales well 
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Our Focus on Rapid Performance Prediction

• Easy integration with selective models with varying abstraction
• Easy integration with physics applications
• Performance and scale
• Packet-level as opposed to phit-level
• For performance and scale (speed advantage in several orders of magnitude, 

allow for full scale models, sufficient accuracy) 

• Emphasis on production systems
• Cielo, Darter, Edison, Hopper, Mira, Sequoia, Stampede, Titan, Vulcan, ... 

• Seamlessly integrated with MPI 
• Implementation of all MPI common functions
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Interconnect Model
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Cray’s Gemini Interconnect

• 3D torus direct topology
• Each building block:
• 2 compute nodes
• 10 torus connections

• ±X*2, ±Y, ±Z*2

• Routing
• Adaptive dimension-order routing

Yarc-2 
Router

Netlink Block

NIC 0 NIC 1Node 0 Node 1

X

Y

Z
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Gemini Validation
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Trace-Driven Simulation

• Use applica*on communica*on traces for 
different DOE mini-apps (from NERSC) 
• For this experiment, we use: 
• LULESH mini-app from ExMatEx

• Approximates hydro-dynamic model and solves 
Sedov blast wave problem 

• 64 MPI processes

• Run trace for each MPI rank: 
• Start MPI call at exactly same *me indicated 

in trace file 
• Store comple*on *me of MPI call 
• Compare it with the comple*on *me in trace 

file

0.409470006 0.410042020 MPI_Isend 2601 MPI_DOUBLE 16 9

Start time End time MPI call Data type

Count Destination
rank

Request ID

0.890784086 0.891833593 MPI_Waitall 15 13 12 11 10 9 16

Start time End time MPI call Request IDs
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Trace-Driven Simulation (Contd.)
• MPI calls:
• MPI_Isend, MPI_Irecv, MPI_Wait (123,336 each)
• MPI_Waitall (12,864)
• MPI_Allreduce (6,336)
• MPI_Barrier, MPI_Reduce (64 each)

• Simulation runtime 55 seconds
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Parallel Performance

• A 1500-node cluster located at Los 
Alamos Na5onal Laboratory

• We varied number of compute 
nodes, from 1 (12 cores) to 256 
nodes (3,072 cores)

• MPI_Allreduce, with different data 
size (1K or 4K bytes)
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Cray’s Aries Interconnect 

• Dragonfly: A cost-efficient topology
• Nodes grouped together (high-radix router)
• Economical, optical signaling technologies 

for distance routing

• Connections
• Local link (completely connected)
• Global link (consecutive connected)

• Routing
• Minimal routing (benign traffic pattern)
• Valiant routing (adversarial traffic pattern)
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Cray’s Aries Interconnect (Contd.) 

• Each group
• 2 cabinets
• 6 chassis 
• 96 Aries blades

• Connections 
• First dimension (green links)

• Connects each blade in a chassis to other 15 blades in the same chassis
• Second dimension (black links)

• Connects each blade to 5 other blades of the other chassis
• Third dimension (blue links)

• Ten connections per blade to other groups 

28



Cray’s Aries Interconnect (Contd.)
• Intra-group routing
• MIN requires
• Two hops among switches

• VAL requires
• Four hops among switches

• Inter-group routing
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MPI Example using Dragonfly Topology

Hardware configuration

MPI application

Run MPI



Model Configuration Example: Dragonfly
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Interconnect
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MPI Configuration Example
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Aries Valida+on
• Trinity@LANL
• 9436 nodes, uses Cray XC40 system
• Average end-to-end latency and
throughput between nodes

• Darter@University of
Tennessee
• 748 nodes, uses Cray XC30
system
• MPI_Allreduce time

33
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Fat-Tree Infiniband FDR

• An m-port n-tree
• Height is (n+1)
• 2(m/2)n processing nodes
• (2n-1)(m/2)n-1 m-port switches

• Rou;ng
• Upward and downward phases 
• Valiant, ECMP, MLID

• Examples: Stampede
• 6400 nodes
• 56Gbps Mellanox switches
• 0.7 μs uplink and downlink latency
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Fat-Tree Validation
• Stampede@TACC
• 6400 nodes, uses fat-tree-based In9iniband system
• FatTreeSim: A ROSS-based simulator for fat-tree
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Application Simulation
• Configura)ons

• Aries: Trinity

• Fat-tree: Stampede

• Gemini: Hopper

• 6,834 nodes connected via Gemini interconnect at 17X8X24

• Blue Gene/Q: Mira

• 49,152 nodes connected via Blue Gene/Q at 8X12X16X16X2

• Applica)on: BigFFT

• MPI_Alltoallv (400)

• MPI_Barrier (500)

• MPI_Group_free (4000)

• MPI_Group_incl (2000)

• MPI_Comm_create (2000)

• MPI_Group_group (2000)
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Case Study: SN Application Proxy

• SNAP is “mini-app” for PARTISN

• PARTISN is code for solving radia;on transport equa;on for neutron 
and gamma transport
• Structured spa;al mesh (“cells”) 
• Mul;group energy treatment (“groups”) 
• Discrete ordinates over angular domain (“direc;ons”)́
• Finite difference ;me discre;za;on (“;me steps”) 
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Application Model: SNAPSim

• Stylized version of actual applications 
• Focus on loop structures, 
important numerical kernels

• Use MPI to facilitate communication 
• Use node model to compute time: 
• Hardware configuration based on clock-speed, cache-level access 

times, memory bandwidth, etc. 
• Predict the execution time for retrieving data from memory, 

performing ALU operations, and storing results

A 2-D illustration of the parallel wavefront solution technique
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Strong Scaling Experiments
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Edison Strong Scaling Study
64 × 32 × 48 Spa9al Mesh 384 

Angles, 42 Energy Groups 
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Conclusions and Path Forward
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Conclusions

• Building a full HPC performance prediction model
• Part of codesign process to test/improve code

• PPT – Performance Prediction Toolkit
• MPI model and Interconnection network models (torus, dragonfly, fat-tree) 
• Validation (throughput, latency, execution time, trace-driven, applications) 
• Scalability testing (parallel performance)
• Application modeling, such as SNAPSim
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Path Forward
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• Multiple applications on different interconnect 
topologies

• Node size impact on applications

Interconnect performance bottleneck analysis



Path Forward (Contd.)
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• Reduce application tail latency

• Completely avoid (jump) the queue

Improve interconnect performance



Path Forward (Contd.)
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• In Gemini, link faults occur “very frequently”

• Analyze link faults in dragonfly

• Fault-tolerant routing 

Improve interconnect performance

“We observed that lane degrade event take 
place at a high rate of one event per minute”

Kumar, M., Gupta, S., Patel, T., Wilder, M., Shi, W., Fu, S., ... & Tiwari, D. (2018, June). Understanding and 

analyzing interconnect errors and network congestion on a large scale HPC system. In 2018 48th Annual 
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (pp. 107-114). IEEE
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Thank You!
Questions?

Acknowledgements:
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Strong Scaling Experiments
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Edison Strong Scaling Study #1
32 × 32 × 48 Spatial Mesh 192 

Angles, 8 Energy Groups 
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Backup Slide: MPI Func3ons
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