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Parallel Discrete Event Simulation



Discrete-Event Simulation (DES)

* Mimic operations over discrete instances of time (events)
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Event Event Event ‘
1. Time stamp 1. Time stamp 1. Time stamp

2. Handler 2. Handler 2. Handler
3. Data 3. Data 3. Data

Main Loop:

Hand| Hand| :
andler Il ls While Event Queue not empty

* Process event * Process event
e Create/insert new e Create/insert new Pop next event
event in Event e event in Event Advance simulation time

Queue Queue Handle the event (call Handler) 4




Parallel Discrete-Event Simulation (PDES)

* Run DES in parallel * More specifically:

* Two purposes: * Model large and complex systems

* Reduce simulation time * Design and parameter exploration

* Increase modeling size
A A
Space Space Space

. : ———l >
Simulation Program

Time Time Time
Time Parallelism Space Parallelism

Replications .




Spatial Decomposition

e Divide simulation model into sub-models that can be distributed to
different processors

e Each sub-model is called a Logical Process (LP)

* Each LP maintains its own event-list
* No global simulation clock!

* LPs communicate via explicit messages




Spatial Decomposition

event event event

event event event event event




Spatial Decomposition (Contd.)

event event event

event event event event event

At each LP, the events shall be processed in non-
decreasing timestamp order!




Parallel Simulation Synchronization

e An algorithm needed to ensure causality constraint (processing events in
timestamp order)

 Fundamental problem for PDES

 CMB algorithm
* R.E. Bryant, MIT Technical Report, 1977
e Jayadev Misra and K. Mani Chandy , IEEE Transactions on Software Engineering, 1979

* Conservative synchronization: execute an event only ensuring that causality error
never happens

* Time Warp Algorithm:

* David Jefferson, ACM Transactions on Programming Languages and Systems, 1985

» Optimistic synchronization: rolling back LP upon causality error (via reverse
computation)



Performance Prediction Toolkit (PPT)



Codesign Modeling to Predict Performance of
SW/Computational Methods on Novel HW Platforms

Model of Computing

Computer
e N
Software Ti
Ime
\ Y,
[ Input }—» - S
Energy
Hardware
- Y,

Key idea = Explore SW and HW design
spaces and assess algorithmic variations

>[ Output ]

| Predicted performance
) measured

Design spaces 11




Codesign Performance Modeling

e Hardware resources are modeled as Entities
* Compute nodes, interconnection networks, processors, memory systems

* Applications and algorithms are modeled as Processes running on
entities

* Processes independently advance in simulation time (sleep for computation
or resource usage)

* Selective refinement of modeling details based on suspected
performance bottlenecks both in hardware and software
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Selective Refinement Modeling

* Goal: maintain modeling scalability for large, complex systems

* We are interested in performance of parallel applications (physics code)
running on petascale and exascale systems

* To find the “right” level of modeling details (just enough to answer
the research questions) is an iterative process:

Start from coarse-level models

Gather experiment results

ldentify components as potential performance bottlenecks

Replace those components by plugging in more refined models

Go to #2 until satisfied

A
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PPT Model Architecture

e Simian — parallel discrete-event simulation engine
e Configurable hardware models: clusters,

Large-Scale Scientific Applications (SNAP, TAD, MC, ..)

compute nodes, processes/cores, l ¥ l

accelerators (GPU), interconnect models,

Message-Passing Interface (MPI)

parallel file systems PN
. Interconnect Models Node Models
* Middleware models: MPI, OpenMP J N\ N Y ¥\
* Application library: benchmark applications [ 1 /0 and File | | Memory
gonfly Torus Systems Cache Processor

(PolyBenchSim, ParboilSim),

Simian (Parallel Discrete-Event Simulation Engine)

production applications (SNAPSim,

SPHSim, SpecTADSIm)

» Data: application instrument data (PolyBench, SNAP, SPH, CloverlLeaf),
hardware specs data (Mustang, Haswell, IvyBridge, SandyBridge, Vortex),
communication data (DOE mini-apps)
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Simian: Parallel Discrete Event Simulation
Engine

* Open source, general purpose parallel discrete- m User Model
event library Ei

* Independent implementation in two interpreted

languages: Python and Lua, with optional C librarie L S'm'anwa
(SUCh aS MPI) (lightweight threa

* Minimalistic design: LOC=500 with 8 common MPI C Libraries (optons ther MPGH2 orOperte)
methods

e Simulation code can be Just-In-Time (JIT) compiled e,
to achieve very competitive event-rates,

outperforming C++ implementation in some cases

[
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Performance Comparison

* La-PDES benchmark: has 8 test case scenarios with 12 parameters
e 2 Simian implementations and MiniSSF (C++)
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MPIRanks

On a mid-size cluster of 1024 core
 Simian scales very well with available MPI ranks (upto 1024 ranks)

e SimianLUA performs 3x better than MiniSSF C++ engine 16



Interconnection Network Models



Interconnection Network

* Interconnect is a critical component of
extreme-scale HPC architectural design

* Interconnection network model is essential
for performance evaluation studies
 Need to be scalable, efficient, and accurate

 Common interconnect topologies
e Torus (e.g., Cray’s Gemini)
* Dragonfly (e.g., Cray’s Aries)
e Fat-tree (e.g., Mellanox Infiniband)
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Existing Interconnection Network Models

* BigSim UIUC?: for performance prediction of large-scale parallel machines
(with relatively simple interconnect models), implemented in Charm++ and
MPI, shown to scale up to 64K ranks intially

e xSim (ORNL): scale to 128M MPI ranks using PDES with lightweight

threads, include various interconnect topologies (high-level models, e.g.,
network congestion omitted)

e SST and SST Macro (SNL): a comprehensive simulation framework,
separate implementation, one intended with cycle-level accuracy and the
other at coarser level for scale

* CODES (ANL): contains interconnect models and storage systems, built on
ROSS using reverse computation simulation that also scales well
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Our Focus on Rapid Performance Prediction

* Easy integration with selective models with varying abstraction
* Easy integration with physics applications
* Performance and scale

* Packet-level as opposed to phit-level
* For performance and scale (speed advantage in several orders of magnitude,
allow for full scale models, sufficient accuracy)
* Emphasis on production systems
* Cielo, Darter, Edison, Hopper, Mira, Sequoia, Stampede, Titan, Vulcan, ...

* Seamlessly integrated with MPI
* Implementation of all MPI common functions

20



Interconnect Model

Schedule service at other Simian entity
req.service(handle_packet_arrival)
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Simian Service
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Simian Process
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Switch | "
Simian Entity
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Cray’s Gemini Interconnect

* 3D torus direct topology
e Each building block:

e 2 compute nodes
* 10 torus connections
o +X*2,4Y, +7*2
* Routing
* Adaptive dimension-order routing

Node 0 NICO || NIC1 Node 1

Netlink Block AI—IL' z
— / / = X )—Y

Yarc-2 I I
Router




Gemini Validation

Compared against empirical results from Hopper @NERSC

FMA Put Throughput (Empirical vs. Simulation)
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Inter-node latency: 1.27us between nearest nodes
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Trace-Driven Simulation

e Use application communication traces for
different DOE mini-apps (from NERSC)

° For thIS expenment’ We use: Stath\time Enjtime MPKaII Data type RequestID

* LULESH mlnl_app from EXMatEX 5409470006 0.410042020 MPI_Isend 2601 MPI_DOUBLE 16 9

* Approximates hydro-dynamic model and solves l_v_l
Sedov blast wave problem Count Destination

* 64 MPI processes rank

[ ) Run trace for eaCh MPl rank: Start time  End time MPI call Request IDs
. o A A A N
 Start MPI call at exactly same time indicated ) )
in trace ﬁle 0.890784086 0.891833593 MPI_Waitall 15131211109 16

* Store completion time of MPI call
* Compare it with the completion time in trace
file
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Trace-Driven Simulation (Contd.)

* MPI calls:
 MPI_lIsend, MPI_Irecv, MPI_Wait (123,336 each)
 MPI_Waitall (12,864)
 MPI_Allreduce (6,336)
 MPI_Barrier, MPl_Reduce (64 each)

e Simulation runtime 55 seconds
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Parallel Performance

. . . 1.4*10°
—— 1KB, run time
* A 1500-node cluster located at Los O —e— 4KB, run time D s
Alamos National Laboratory 12000 O 4KB, evtrate |
0 41.0*10°
* We varied number of compute g 10000 o
o 18.0"10° ®
nodes, from 1 (12 cores) to 256 g 8000 <
nodes (3,072 cores) £ 6000 160710° &
* MPI_Allreduce, with different data = 4000 | 1 40m10°
size (1K or 4K bytes) 2000 | 12.0"10°
N — 0.010°
12 48 192 768 3072

Number of Cores

Three times event-rate of an optimized C++
simulator (MiniSSF)
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Cray’s Aries Interconnect

* Dragonfly: A cost-efficient topology
* Nodes grouped together (high-radix router)
* Economical, optical signaling technologies
for distance routing
* Connections
* Local link (completely connected)
e Global link (consecutive connected)

* Routing
* Minimal routing (benign traffic pattern)
 Valiant routing (adversarial traffic pattern)

27



Cray’s Aries Interconnect (Contd.)

* Each group

, 0000000000000 00
e ) cabinets ©o0o0eee00 0000000000000 0O0
. . 000606600 0000000000000 0O0
6 chassis 00000000 0000000000000 0O0
. 00000000 0000000000000 00
[ ]
96 Aries blades ¢ >) 00E

(0000060 0)

e Connections

 First dimension (green links) w w w w

* Connects each blade in a chassis to other 15 blades in the same chassis
* Second dimension (black links)
* Connects each blade to 5 other blades of the other chassis

e Third dimension (blue links)
* Ten connections per blade to other groups
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Cray’s Aries Interconnect (Contd.)
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MPI Example using Dragonfly

# helloworld.py :- use mpi as simple as possible
# test dragonfly topology

def main(mpi_comm_world, msg):
n = mpi_comm_size(mpi_comm_world) # total num of ranks
p = mpi_comm_rank(mpi_comm_world) # rank of this process

print("%f: myapp: rank %d sends msg to rank %d" %
(mpi_wtime(mpi_comm_world), p., (p+1)%n))

succ = mpi_send((p+1)%n, "hello", 10, mpi_comm_world)

print("%f: myapp: rank %d done sent: %s" %
(mpi_wtime(mpi_comm_world), p, "success" if succ else "failed"))

mpi_finalize(mpi_comm_world)

model_dict = {
# simian parameters
"model_name" : "helloworld", # name of the model
"sim_time" : le6, # end simulation time in seconds
"use_mpi" : True, # whether mpi is activated

# parameters for interconnect model
"intercon_type" : "Dragonfly", # IMPORTANT: type is case sensitive
"dragonfly" : configs.dragonfly_intercon, # use sample dragonfly config

# compute node parameters; IMPORTANT: type is case sensitive
"host_type" : "Host", # generic compute node with or without mpi installed

# optional libraries/modules to be loaded onto compute nodes

"load_libraries":

set(["mpi"]), # IMPORANT: 1lib names are case sensitie

# mpi configurations (necessary if mpi is loaded)
"mpiopt" : configs.aries_mpiopt, # standard mpi config for Aries

}

cluster = Cluster(model_dict)

hostmap = range(10) # 10 mpi processes on separate hosts
cluster.start_mpiChostmap, main, "hello world")
cluster.run()

opology

> MPI application

-
N

>_ Hardware configuration

Run MPI



Model Configuration Example: Dragonfly

# dragonfly_config.py :- configuration for a simple dragonfly and
# Aries topo configs

dragonfly_intercon =
# This is a sample dragonfly topology taken as example from the
# paper "Technology-Driven, Highly-Scalable Dragonfly Topology" by
# William J. Dally

"num_groups": 9,
"num_switches_per_group": 50,

"num_hosts_per_switch": 2, Interconnect
"num_ports_per_host": 7,

"num_inter_links_per_switch": 2, model
"num_intra_links_per_switch": 49, parameters
"inter_group_delay" : 1.92e-6,

"intra_group_delay" : 1.545e-6, Delay and

"switch_host_delay" : 1.498e-6, )
"inter_group_bdw" : 8.16e10, # 10.2GB/s bandwidth
"intra_group_bdw" : 1.5ell, # 18.75 GB/s

"switch_host_bdw" : 4.2e10, # 5.25 GB/s parameters

"intra_group_topology": "all_to_all",
"inter_group_topology": "consecutive",
"route _method": "minimal". routing options
"intra_link_dups": 1,
"inter_link_dups": 1,

Topology and




MPI Configuration Example

# MPI configuration for Cray's Aries network

From "Cray XC series network" by Bob Alverson, Edwin Froese, Larry
Kaplan and Duncan Roweth. Cray Inc., White Paper WP-Aries@1-1112.

In Cray XC, remote references are performed as gets/puts and atomic
memory operations. A put causes data to flow directly across the
network to target node. When node issues commands, NIc packetizes
these requests and issues the packets to the network. When packet
reaches its destingtion _the _destingtion nade returns a response to
the source. Packet contains up to 64 bytes of data.

Each 64-byte write (put) requires 14 request phits and 1 response

‘ phit. Each 64-byte read (get) requires three request phit and 12 ’
response phits.
The Aries NIC can perform a 64-byte read or write every five cycles

(10.2GB/s at 800MHz). This number represents the peak injection rate
achieveable by user processes.

aries_mpiopt = {
"min_pktsz" : 0,

"max_pktsz" : 64,
"put_data_overhead" : 42, # 14 phits
"put_ack_overhead" : 3, # 1 phit
"get_data_overhead" : 36, # 12 phits
"get_ack_overhead" : 9, # 3 phit3




Aries Validation

* Trinity@LANL * Darter@University of
Tennessee
* 9436 nodes, uses Cray XC40 system €
e 748 nodes, uses Cray XC30
* Average end-to-end latency and 5 sg'gcerr(l) ’ y
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Fat-Tree Infiniband FDR

* An m-port n-tree
e Heightis (n+1)

* 2(m/2)" processing nodes (00, 0) (01, 0) {10, 0) a1, 0)
e (2n-1)(m/2)"! m-port switches /° <= =S = =
* ROUﬁng 2 3|[2 3]|[2 3|[2 3][2 3|[2 3][2 3|[2 3
©0, 1y| | o1, 1y || o, iy || ay 1y || 20, || L 1|]G0, 1)||EL 1)
* Upward and downward phases [0 "+ |lo 1 lo +Jlo 1]lo 1 Jlo 1)lo 1 lo
o Va|iant, ECMP, MLID 2 3><2 3 2 3><2 32 3><2 3] [2 3><2 3
<00 2> <01 <1o 2> <11 2> <20 2> <21 2) <3o 2> <31 2>

e E les: St d
~oaonodes o “““

* 56Gbps Mellanox switches
* 0.7 ps uplink and downlink latency
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Fat-Tree Validation

Average Latency (microseconds)

6000

E_rhulab_ |
5000 | o B Treeqim
4000 [ Tum Tum oB "sB o |
3000 ¢
2000 |
1000 |
0

e Stampede@TACC

* 6400 nodes, uses fat-tree-based Infiniband system
* FatTreeSim: A ROSS-based simulator for fat-tree

Random Traffic
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Application Simulation

e Configurations
* Aries: Trinity
* Fat-tree: Stampede
* Gemini: Hopper

* 6,834 nodes connected via Gemini interconnect at 17X8X24

* Blue Gene/Q: Mira

* 49,152 nodes connected via Blue Gene/Q at 8X12X16X16X2

* Application: BigFFT
 MPI_Alltoallv (400)
MPI_Barrier (500)
MPI_Group_free (4000)
MPI_Group_incl (2000)
MPI_Comm_create (2000)
MPI_Group_group (2000)

Average Number of Hops

_ a -
O N B~ OO OO O DN P

- mmmmm Simulation Time

Number of Hopé

90

1 80
1 70
1 60

50

{40
{30
{ 20
110

Simulation Time (seconds)
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Case Study: SN Application Proxy

* SNAP is “mini-app” for PARTISN

* PARTISN is code for solving radiation transport equation for neutron
and gamma transport
 Structured spatial mesh (“cells”)
* Multigroup energy treatment (“groups”)
» Discrete ordinates over angular domain (“directions™)
* Finite difference time discretization (“time steps”)
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Application Model: SNAPSIm

A 2-D illustration of the parallel wavefront solution technique

p=2 pipeline [

* Stylized version of actual applications ki | o :
* Focus on loop structures, o0 I' o
important numerical kernels s pelne :

* Use MPI to facilitate communication - "

e

* Use node model to compute time:

* Hardware configuration based on clock-speed, cache-level access
times, memory bandwidth, etc.

* Predict the execution time for retrieving data from memory,
performing ALU operations, and storing results
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Strong Scaling Experiments

Edison Strong Scaling Study

64 x 32 x 48 Spatial Mesh 384
Angles, 42 Energy Groups

—+— Predicted (SNAPSim)
14 =% Measured (SNAP) o o -

Execution Time (seconds)

0O 200 400 600 800 1000 1200 1400 1600
Processes
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Conclusions and Path Forward



Conclusions

 Building a full HPC performance prediction model
 Part of codesign process to test/improve code

* PPT — Performance Prediction Toolkit
 MPI model and Interconnection network models (torus, dragonfly, fat-tree)
* Validation (throughput, latency, execution time, trace-driven, applications)
 Scalability testing (parallel performance)
e Application modeling, such as SNAPSIim
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Path Forward

‘ Interconnect performance bottleneck analysis

* Multiple applications on different interconnect
topologies

* Node size impact on applications

42



Path Forward (Contd.)

@ Improve interconnect performance

* Reduce application tail latency

 Completely avoid (jJump) the queue

Meet Slingshot: An Innovative Interconnect
for the Next Generation of Supercomputers

OCTOBER 30, 2018 BY STEVE SCOTT  LEAVE A COMMENT

dramatically reduced in the network. Slingshot’s focus on bringing down tail latency
(the latency that the slowest 1%, 0.1% or even 0.01% of packets experience) is key to
making latency-sensitive and synchronization-heavy applications perform well. It can
have a pretty dramatic impact on the performance of these applications.
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Path Forward (Contd.)

@ Improve interconnect performance

* In Gemini, link faults occur “very frequently”
* Analyze link faults in dragonfly

e Fault-tolerant routing

“We observed that lane degrade event take
place at a high rate of one event per minute”

Kumar, M., Gupta, S., Patel, T., Wilder, M., Shi, W., Fu, S, ... & Tiwari, D. (2018, June). Understanding and
analyzing interconnect errors and network congestion on a large scale HPC system. In 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (pp. 107-114). IEEE
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Strong Scaling Experiments
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Backup Slide: MPI Functions

Table 1: Implemented MPI Functions

MPI_Send | blocking send (until message delivered to destination)
MPI_Recv blocking receive
MPI_Sendrecv send and receive messages at the same time
MPI_lsend non-blocking send, return a request handle
MPI_Irecv non-blocking receive, return a request handle
MPI_Wait wait until given non-blocking operation has completed
MPI_Waitall wait for a set of non-blocking operations
MPI_Reduce reduce values from all processes, root has final result
MPI_Allreduce reduce values from all, everyone has final result
MPI_Bcast broadcast a message from root to all processes
MPI_Barrier block until all processes have called this function
MPI_Gather | gather values form all processes at root
MPI_Allgather | gather values from all processes and give to evervone
MPI_Scatter send individual messages from root to all processes
MPI_Alltoall | send individual messages from all to all processes

MPI_Alltoallv

same as above, but each can send different amount

MPI_Comm_split

create sub-communicators

MPI_Comm_dup

duplicate an existing communicator

MPI_Comm_free

deallocate a communicator

MPI_Comm_group

return group associated with communicator

MPI_Group_size

return group size

MPI_Group_rank

return process rank in group

MPI_Group_incl

create new group including all listed

MPFI_Group_excl

create new group excluding all listed

MPFI_Group_free

reclaim the group

MPI_Cart_create

add cartesian coordinates to communicator

MPI_Cart_coords

return cartesian coordinates of given rank

MPI_Cart_rank

return rank of given cartesian coordinates

MPI_Cart_shift

return shifted source and destination ranks

48



