
Enabling Demand Response for HPC Systems
Through Power Capping and Node Scaling

Kishwar Ahmed, Jason Liu
School of Computing and Information Sciences

Florida International University
Emails: {kahme006,liux}@cis.fiu.edu

Kazutomo Yoshii
Mathematics and Computer Science Division

Argonne National Laboratory
Email: kazutomo@mcs.anl.gov

Abstract—Demand response is an increasingly popular pro-
gram ensuring power grid stability during a sudden surge in
power demand. We expect high-performance computing (HPC)
systems to be valued participants in such program for their
massive power consumption. In this paper, we propose an emer-
gency demand-response model exploiting both power capping
of HPC systems and node scaling of HPC applications. First,
we present power and performance prediction models for HPC
systems with only power capping, upon which we propose our
demand-response model. We validate the models with real-life
measurements of application characteristics. Next, we present
models to predict energy-to-solution for HPC applications with
different numbers of nodes and power-capping values, and
we validate the models. Based on the prediction models, we
propose an emergency demand response participation model for
HPC systems to determine optimal resource allocation based on
power capping and node scaling. Finally, we demonstrate the
effectiveness of our proposed demand-response model using real-
life measurements and trace data. We show that our approach
can reduce energy consumption with only a slight increase in
the execution time for HPC applications during critical demand
response periods.

Index Terms—Demand Response; High-Performance Comput-
ing; Power Capping; Energy Efficiency.

I. INTRODUCTION

Demand response aims at energy reduction during peak
electricity periods or other emergency events, and as such
provides financial incentives to its participants. Various demand
response programs are offered by energy service providers to
encourage energy reduction from participants. Among these
programs, emergency demand response is most widely adopted,
taking up 87% of all the demand response capabilities across
the U.S [1]. Emergency demand response requires participants
to reduce the energy consumption to requested levels when
supply shortage situations or emergency conditions occur (e.g.,
extremely cold/hot weather, natural disasters). Many electricity
markets (e.g., PJM, NYISO, and ISO-NE) serving major states
in the United States contribute to power grid stability through
demand response participation [2]. The National Institute of
Standards and Technology (NIST) and the U.S. Department
of Energy (DoE) have both identified demand response as one
of the priority goals to achieve power grid efficiency [3], [4].
Many countries, including many EU countries [5], already have
a demand response participation program in place [6]. The
literature includes a large body of research and field studies

of demand response for various sectors, such as data centers
and smart buildings (e.g., [7], [8]).

High-performance computing (HPC) systems are generally
large infrastructures containing thousands of nodes with a
low latency interconnect and distributed file system. Scien-
tific applications with high computation and communication
requirements are generally executed on HPC systems. HPC
systems can consume an enormous amount of energy during
their operation. In the U.S., the Department of Energy has set a
limit in the total power consumption of an upcoming exascale
system to be within 20 MW. It is projected nevertheless that
future HPC systems in many other countries can easily exceed
this amount; some systems may even consume hundreds of
megawatts of electricity [9]. Apparently, the energy cost is
a major component of the overall cost of operation of an
HPC system. Any reduction in the electricity bill can be a
significant benefit for HPC facilities. Furthermore, the energy
consumption of HPC systems can fluctuate drastically due to
workload diversity, temperature fluctuation, and dynamic power
saving technologies such as clock gating and power gating.
Being able to predict and control the massive energy demand
can be important for maintaining stability of the energy provider.
We argue that by participating in the demand-response program
and earning rewards from such participation, HPC systems can
both reduce the overall cost of operation and contribute to the
power system stability.

To cope with the variations in processing, modern proces-
sors are becoming adaptive, providing hardware-level power-
capping capabilities that can opportunistically adjust their
core frequency based on thermal and energy constraints (e.g.,
Intel’s Turbo Boost Technology). Power-capping capability is
becoming a standard feature for modern processors through
various programming interfaces, such as Intel’s running average
power limit (RAPL) [10], AMD’s advanced power management
link (APML) [11], and NVIDIA’s NVIDIA management library
(NVML) [12]. New intelligent features have been introduced in
processors to achieve energy efficiency through power capping
at various locations in the system hierarchy. For example, Intel’s
Intelligent Power Node Manager and Data Center Manager
allow power capping at the node level and component level
(e.g., processor, memory) to achieve energy efficiency with
different granularity [13].

In this paper, we propose an emergency demand-response

model for HPC systems based on power capping and node
scaling. Our contributions can be summarized as follows:
• We exploit the power-capping capability in the modern

processors to enable HPC system emergency demand response
participation. We present prediction models for power and
performance prediction with respect to different power-capping
values. We propose a demand response participation model
for HPC systems based on the prediction models with power
capping.
• We extend the HPC system demand-response model

by exploiting job malleability. We incorporate an energy-to-
solution prediction model to the demand-response model in
order to determine the optimal job size and power-capping
values.
• We perform experiments using real-life scientific applica-

tions on an existing HPC cluster to measure application perfor-
mance and power usage under different power-capping values.
Using these measurements, we use trace-based simulation to
show the effectiveness of our proposed demand-response model
and compare it with power-capping policies implemented in
processors.

The rest of this paper is organized as follows. Section II
describes the background and the motivation behind our work,
and present work in related areas. Section III describes the
energy and performance prediction models and proposes the
model for HPC demand response participation exploiting the
power-capping property in processors. In Section IV, we present
demand-response models that exploit node scaling and power-
capping properties. In Section V, we use real-life measurements
to compare our approach with traditional methods. Section VI
presents our conclusions.

II. RELATED WORK

In this section, we present the background behind our
work. We also present related work in the following areas:
power allocation methods in HPC systems for performance
optimization, demand response in various sectors, and energy
prediction in HPC systems.

A. Background

a) Power Capping: Power capping is the allocation of
power to nodes mainly to achieve an overall HPC cluster power
limit. Power capping not only helps achieve power reduction
in the node but also optimizes application performance within
a power budget. In this paper, we optimally allocate power to
nodes in order to enable the participation of HPC systems in
emergency demand-response program.

Power capping can be optimized to control performance
and power of applications. With changes in the power limit,
application execution time and average power consumption
may change, which can impact the energy-to-solution of an
application. Fig. 1 shows an example application behavior
under different power-capping values. Fig. 1(a) presents our
measured energy consumption and execution time for running
an HPC application (Intel’s DGEMM application from the
HPCC suite [15]) on a cluster. As can be observed in the

 9

 10

 11

 12

 13

 14

 30 35 40 45 50 55 60 65 70
 3

 4

 5

 6

 7

 8

 9

En
er

gy
 C

on
su

m
pt

io
n

(K
J)

Ex
ec

ut
io

n
Ti

m
e

(m
in

)

Power Cap Level (Watt)

Energy Consumption
Execution Time

(a) Measurements on a Cluster

 400
 420
 440
 460
 480
 500
 520
 540
 560

 25 30 35 40 45 50 55 60
 600

 700

 800

 900

 1000

 1100

 1200

En
er

gy
 C

on
su

m
pt

io
n

(M
W

h)

Ex
ec

ut
io

n
Ti

m
e

(H
ou

rs
)

Power Cap Level (Watt)

Energy Consumption
Execution Time

(b) Reported Measurements in [14]

Fig. 1. Impact of power capping on application characteristics.

figure, energy consumption has a convex characteristic that can
be exploited to achieve optimal energy consumption. We exploit
the property to enable demand response participation in this
study. Such convexity can also be observed in the literature. For
example, Fig. 1(b) presents application characteristics reported
in [14], where the scientific applications were collected from
the Rodinia benchmark suite and the NPB benchmark suite.
As evident from this figure, energy consumption has a convex
relation with changes in the power-capping values.

b) Demand Response: Demand response is a program
that anticipates customers to reduce energy consumption upon
requests from the power utility companies during the time
periods of high demand power usage or temporary shortage
in power supply. Customers are willing to participate in
demand-response programs in expectation to receive financial
or operational benefits from the utility companies. Demand
response can be broadly categorized into two types: economic
demand response and emergency demand response. In eco-
nomic demand response, participants voluntarily enroll in the
programs (without the need of prior commitment) and willingly
reduce the load based on economic incentives offered by the
supplier. Emergency demand response requires prior commit-
ment from the participants; once enrolled, it is mandatory for
the participants to shed loads and collectively prevent the power
grid from getting into blackouts, potentially saving billions
of dollars’ loss. Thus, many demand response resources, e.g.,
data centers, office buildings, and residential customers, are

emerging and sought to participate in emergency demand-
response program. Overall, demand response has become
increasingly popular among power utility companies. Revenue
earnings from demand response has increased significantly in
recent years. For example, a report from PJM Interconnection
(a large utility company servicing many states in the U.S.)
shows that it has achieved an earning of $650 million from
various demand response participation in 2016, a significant
increase from only about $50 million in 2006 [16].

B. Related Work in Power Allocation

Various power-capping-aware methods have been proposed
in the literature to optimize power, performance, and energy in
HPC systems. Before the emergence of hardware-level power-
capping mechanisms, dynamic voltage frequency scaling, idle
cycle injection, and clock cycle modulation were popular
approaches to limit the power consumption of processors.
Hardware-level power capping is the most lucrative choice,
since it gives the highest opportunity to save energy [17]. RAPL,
an implementation of hardware-level power capping, was first
introduced in Sandy Bridge processors [18]. Patki et al. [19]
performed an extensive study of application performance for
an entire cluster while limiting the power usage at the node
level. An optimal power allocation scheme was proposed with
consideration of application parallel efficiency and memory
intensity to achieve the best application performance. Recently,
Liu et al. proposed FastCap [20], a system-wide power-capping
approach based on both CPU and memory DVFS to achieve
optimal system performance within a given budget for systems
with a large number of cores.

Recently, much interest has been shown for job scheduling
and resource allocation to HPC jobs in power bound HPC sys-
tems. Sarood et al. explored the possibility of exploiting power
capping capability of processor and memory subsystems in HPC
systems to achieve optimal application execution time within
the power budget [21]. They presented an interpolation scheme
to estimate application execution time at various processor and
memory power levels and later used the prediction to optimize
number of nodes and power allocation to nodes by exploiting
RAPL capability. In [22], Sarood et al. presented an optimal
dynamic resource allocation scheme in HPC systems within a
power budget. More specifically, the scheme allocated power
and nodes to HPC jobs exploiting resource overprovisioning,
power capping, and job malleability properties to maximize
job throughput. Unlike these methods, our focus is on enabling
emergency demand response participation for HPC systems,
although we do exploit the same set of capabilities (power
capping and job malleability).

C. Related Work in Demand Response

Demand response participation in various sectors (e.g., data
centers, smart buildings) is a well-studied topic. Being a
large energy consumer and also being flexible to workload
serving requirements, data centers have proved capable of
contributing to demand-response programs effectively and
quickly (e.g., [7] and references therein). Data center demand

response exploits different workload scheduling (e.g., load
shifting in time and load balancing among geographical
locations) and resource provisioning (e.g., server consolidation,
speed scaling) to enable demand response participation. There
are also studies enabling demand response participation from
smart buildings [8]. However, these approaches are applicable
for different types of workloads (such as Internet transaction-
based workload) but not for HPC applications. Unlike data
center jobs, most HPC applications can tolerate certain delays.
Moreover, HPC applications have a unique power and perfor-
mance signature, whereas data center jobs do not necessarily
demonstrate such trait. Therefore, data center demand-response
models cannot be directly applied to HPC systems. Recently,
we proposed a demand-response-aware model considering
frequency scaling for HPC systems [23]. In this paper, we
explore HPC system demand response participation using power
capping and job malleability properties. In addition, we study
power, performance, and energy prediction models for power
capping at the per node level and with different job sizes.

D. Related Work in Energy Prediction
A number of analytical models have been introduced to

capture the relation between power, energy, performance, etc.,
for different job sizes. Hager et al. presented an analytical model
based on the Execution-Cache-Memory (ECM) model (derived
from roofline model) to represent power and performance of
multi-core processors [24]. Their approach requires specific
information about the applications (such as instruction type)
and the platform (e.g., the number of execution ports) in
order to perform the prediction. Shoukourian et al. [25]
proposed an analytical model, called the Adaptive Energy
and Power Consumption Prediction (AEPCP), for application-
specific power and energy prediction. Based on historical
energy usage by specific applications, their model predicts
future power and energy usage. The model can also adapt
prediction accuracy continuously with further execution of
the applications. Shoukourian et al. extended the AEPCP
model and proposed the Lightweight Adaptive Consumption
Prediction (LACP) model to predict application execution
time, power, energy for different number of nodes and CPU
frequency [26]. The LACP model, however, does not predict
application characteristics for different power-capping values.
Our demand-response model uses HPC application performance
prediction models for different power-capping values and node
scaling.

III. DEMAND RESPONSE THROUGH POWER CAPPING

In this section, we present the performance prediction models
we consider and the optimization problem we implement for
demand response participation of HPC systems. We leverage
the power-capping property in each node to enable demand
response participation.

A. Power and Performance Prediction Models
We first present the power-capping prediction model that

we use to predict application behavior under different power-
capping values. The average power consumption of job j

running on a processor at power-capping level P can be
estimated by the following polynomial function:

p(j, P) = aj + bj · P + cj · P 2 + dj · P 3 (1)

where aj , bj , cj , and dj are constants determined from
empirical analysis of the average power relation with different
power-capping values. In particular, aj represents the static
power consumption while running the application.

In a similar approach, we can determine the execution time
of job j at power-capping level P using the following equation:

t(j, P) = αj · eβj ·P + γj (2)

where αj , βj , and γj are regression coefficients determined
from polynomial fitting function using empirical data.

To gain confidence in the proposed models, we present a
validation study of the power and execution time prediction
models based on real-life measurements of application running
on a cluster.

We used a system monitoring/controlling tool, called
pycoolr [27], to sample per-CPU core temperatures and
CPU/DRAM power consumption. The tool uses the Intel RAPL
interface to take measurements and reports the results in the
JavaScript Object Notation (json) format for later analysis. The
tool can also be used to set the upper limit of CPU power
consumption. In the validation study, we used pycoolr to
set the processor’s power limit and to characterize the behavior
of HPC applications, particularly focusing on performance,
temperature change, and actual power consumption with various
power-capping values.

Our testbed is an Intel Sandy Bridge node with two Xeon
E5-2670 processors, 8 cores, and 16 hardware threads with
hyper-threading, which were run at 2.6 GHz, up to 3.3 GHz
with the Intel Turbo Boost Technology. The two processors are
connected via two Intel Quick Path Interconnect links, which
form a cache-coherent NUMA node.

We selected various HPC applications from different sources,
such that they can be representative of different application
characteristics (e.g., compute-intensity vs. communication-
intensity). In particular, we chose the applications from the
CORAL benchmarks [28], the NAS Parallel Benchmarks
(NPB) [29], and the HPCC Suite [15].

The CORAL initiative is a collaboration among Lawrence
Livermore National Laboratory, Oak Ridge National Laboratory,
and Argonne National Laboratory and contains a number of
HPC benchmarks, representing various DOE applications. We
selected applications from the following divisions: scalable
science benchmarks (applications expected to run at full scale
on the CORAL systems), throughput benchmarks (applications
representing large ensemble runs), data-centric benchmarks
(applications representing data-intensive workloads, such as
integer operations, instruction throughput, and indirect ad-
dressing), and skeleton benchmarks (proxy applications that
investigate various platform characteristics including network
performance, and multithreading overheads.) The following
applications were chosen in particular from CORAL: (1)
Nekbone, a compute-intensive application supporting various

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Level (Watt)

Prediction
Measurements

(a) AMG

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Level (Watt)

Prediction
Measurements

(b) NAS Parallel Benchmark (CG)

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Level (Watt)

Prediction
Measurements

(c) DGEMM

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Level (Watt)

Prediction
Measurements

(d) Nekbone

Fig. 2. Power regression model for different applications.

operations (such as MPI Allreduce, vector operations, and
matrix-matrix multiplication); (2) LULESH, an application that
models hydrodynamics for unstructured meshes and solves
a simple Sedov blast problem; (3) Hash, an application that
evaluates the performance of architecture integer operations;
and (4) XSBench, an application that stresses system through
memory capacity.

The NPB suite includes a small set of programs designed to
help evaluate the performance of parallel applications. From
this suite, we selected the CG application (class C), which uses
a conjugate gradient algorithm for solving particular systems
of linear equations. From the HPCC suite, we selected Intel’s
DGEMM application for our study. DGEMM is a double-
precision general dense-matrix multiply routine in the Intel
MKL library. The application is designed to measure the
sustained, floating-point computational rate of a single node.

For our validation study, we varied the power-capping
level from 40 W to 140 W at the increment of 20 W. We
measured the average power usage and execution time of
the applications using the pycoolr tool. Fig. 2 shows the
average power consumption of running different applications:
AMG, CG, DGEMM, and Nekbone, respectively. We plot
both the measured experiment data and the fitted model data
in the same figures. We observe that the prediction model
matches with the application power usage generally well. Fig. 3
shows the execution time of different applications with different
power-capping values. Similar to the power prediction model,
the execution time prediction model is reasonably accurate,
as evident from the figure. We later use the measured data
and prediction models to demonstrate the effectiveness of our
proposed HPC system demand-response model.

B. Determining Optimal Power Cap

Next, we present an optimal power cap allocation algorithm
for HPC system demand response participation.

During normal operating time, we set the power-capping
value to the maximum limit. This is to ensure that the applica-

 105
 110
 115
 120
 125
 130
 135
 140
 145
 150

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Level (Watt)

Prediction
Measurements

(a) AMG

 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Level (Watt)

Prediction
Measurements

(b) NAS Parallel Benchmark (CG)

 170
 180
 190
 200
 210
 220
 230
 240
 250
 260

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Level (Watt)

Prediction
Measurements

(c) DGEMM

 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Level (Watt)

Prediction
Measurements

(d) Nekbone

Fig. 3. Run-time regression model for different applications.

tions are run with maximum performance, such that demand
response participation from HPC system does not impact
the original target: to achieve high-performance capability
for running the applications. When a demand response event
happens, we exploit the power-capping property and select an
appropriate power-capping value to reduce energy consumption.

For simplicity, we assume that a job j runs with the same
power cap P on all nj processors, where nj is the job size.
The total energy consumption of the job can be determined as
follows:

e(j, P) = nj · p(j, P) · t(j, P) (3)

Let Pmin and Pmax denote the minimum and maximum
power cap allowed by the HPC processor architecture, respec-
tively. We determine the power cap of the processors Pj for
job j such that

Pmin ≤ Pj ≤ Pmax (4)

During the demand response period, we resort to the energy
conservation mode by selecting the appropriate power cap
values of all running jobs so that we can minimize the overall
energy usage. The power cap limit allocation problem can be
formulated as an optimization problem, as follows:

Minimize:
∑
j∈R

eR(j, Pj)

subject to constraint (4),
(5)

where eR(j, Pj) denotes the remaining energy expected to be
consumed if running job j at power cap Pj , which can be
calculated as follows:

eR(j, Pj) = (1− αj) · nj · p(j, Pj) · t(j, Pj) (6)

where αj is the percentage of job j that has been completed thus
far. As outlined earlier, the energy consumption of applications
at different power-capping values has been in general shown
to be convex. We can therefore solve the optimization problem
using standard optimization solver and determine optimal
power-capping values for each job.

IV. DEMAND RESPONSE THROUGH POWER CAPPING AND
NODE SCALING

In this section, we extend our demand-response model to
incorporate node scaling for jobs that can vary the job size (i.e.,
with job malleability). In the preceding section, we considered
only power capping. We do so when one cannot change the
job size, that is, when the jobs are specified with a fixed
number of nodes upon arrival. In this section, we relax this
constraint for malleable jobs and exploit both node-scaling and
power-capping capabilities for HPC system demand response
participation.

A. Energy-to-Solution Prediction Model

We first present a prediction model that incorporates the
effect of both node scaling and power capping for demand
response. We consider various regression prediction models
(e.g., linear interpolation, spline interpolation) for predicting
the energy-to-solution (EtS) of the same HPC applications.
We determine the type of predictor to be used in the demand-
response model based on the root-mean-square-error value
determined from the learned data and predicted data.

We implemented the following five predictor functions: (1)
Linear, which captures the linear behavior of predicted function;
(2) Spline, which captures the non-linear behavior of the
prediction; (3) Linear + Spline, which is a combination that
first captures the linear and then the non-linear behavior of the
prediction; (4) Spline + Linear, which is a combination that first
captures the non-linear behavior of the prediction and then the
linear behavior of prediction; and (5) Linear + Spline + Linear,
which is a combination that captures the nonlinear behavior
in-between the linear behavior predictions at the beginning and
at the end. For the combined cases, we determine the boundary
value between different prediction regimes (i.e., the points
at which transition is made from linear to nonlinear or vice
versa). After determining the appropriate prediction function
and boundary values, we are able to predict the application
behavior for unknown numbers of nodes. Then, we interpolate
across known power-capping values to predict the application
characteristics for unknown power-capping values.

To validate the EtS prediction model for different job sizes,
we collected and used the values reported in [25] for two HPC
applications: Hydro [30] and EPOCH [31]. We first consider
a strong-scaling scenario for the application Hydro and use
the values from [25]. For this case, the data available were for
node numbers 1, 2, 4, 8, 16, 165, 450, and 500. Fig. 4(a) shows
the measured data points and predicted results for this scenario.
We observe that the prediction model correctly predicts a
combination of nonlinear and linear predictor functions to be
used for prediction, along with the appropriate boundary value
(i.e., 450 nodes in this example). The prediction error is low.
We make similar observations for Hydro under weak scaling,
as shown in Fig. 4(b): the prediction error is reasonably low
for this application.

Next, we consider a strong-scaling scenario for the appli-
cation EPOCH. Fig. 4(c) presents the prediction for EPOCH
application with strong scaling. We use the values from [25].

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 100 200 300 400 500

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Number of Nodes

Prediction
Learned

(a) Hydro (Strong Scaling)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 100 200 300 400 500

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Number of Nodes

Prediction
Learned

(b) Hydro (Weak Scaling)

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Number of Nodes

Prediction
Learned

(c) Epoch (Strong Scaling)

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 100 200 300 400 500

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Number of Nodes

Prediction
Learned

(d) Epoch (Weak Scaling)

Fig. 4. Node scaling model for different applications.

For this case, the data available were for node numbers 64,
75, 90, and 128. Fig. 4(d) presents the measured data points
(for node numbers 16, 40, and 64) and predicted results for
this scenario. As can be seen from the figures, the prediction
model correctly predicts based on the measured data.

B. Determining Optimal Power Cap and Node Number

Now, we formulate an optimization problem to determine
the optimal power cap and node number for the HPC system
emergency demand response participation. The optimal number
of nodes and optimal power cap determination problem during
demand response periods can be formulated as follows:

Minimize:
∑
j∈R

eR(j, Pj , nj)

subject to constraint (4)
(7)

where eR(j, Pj , nj) denotes the remaining energy expected to
be consumed if running job j at power cap Pj on nj number
of nodes, which can be calculated as follows:

eR(j, Pj , nj) = (1− αj) · nj · p(j, Pj) · t(j, Pj) (8)

We determine nj and Pj for job j to optimize (7).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
power-capping-based demand-response model. We first present
the job scheduler simulator we use for the performance
study. Next, we present a performance study of our demand
response method with only power capping. Then, we present a
performance study with both power-capping and node-scaling
capabilities.

A. Scheduler Simulator

We developed a job scheduler simulator to simulate HPC
jobs and demonstrate effectiveness of our proposed approaches.
The scheduler simulator has trace-driven capability to run
large numbers of jobs. The simulator provides the flexibility to

incorporate new scheduling functions, power-aware methods,
and so on. We developed our scheduler simulator based on
Simian [32], an open-source, process-oriented parallel discrete-
event simulation (PDES) engine. Simian has a minimalistic
design, with only 500 lines of code in Python. For some models,
Simian has outperformed simulators using compiled languages
such as C or C++. Moreover, recently several simulation
models have been developed based on Simian, demonstrating
the effectiveness of the PDES engine [33], [34], [35], [36].
We validated our scheduler simulator against PYSS, a Python-
based scheduler simulator for HPC workloads, which has been
used to study various scheduling algorithms in HPC systems
and has been used widely in the literature [37], [38].

B. Performance Evaluation

Now, we present experiments and results to show the
effectiveness of our demand-response model exploiting the
power-capping capability. We used two benchmarks:
• Demand-Response, which determines the optimal power-

capping value based on the optimization problem and solution
given in (5) during a demand response period. It chooses the
maximum power-capping limit during the normal operating
time.
• Non-Demand-Response, which always chooses the max-

imum power-capping limit to ensure best application perfor-
mance. We choose this benchmark since it ensures the high-
performance requirements of HPC applications. Such policy
is also denoted as the default method for power allocation to
processors [39].

To evaluate our design, we used a real-life workload trace
from the parallel workload archive [40]. The trace was collected
at the San Diego Supercomputer Center (SDSC SP2), which
contains 5,000 jobs. This trace has been widely used in various
studies [41], [42]. The trace includes information about job
start time, job run time, job wait time, requested number of
processors, and so on. The workload trace, however, does not
contain any power-related information. For that, we ran real-life
applications on the cluster to measure the power consumption.
The details of the applications’ power and execution time are
given in Section III.

Fig. 5 compares the two benchmarks with different demand
response events ratio. We vary the demand response events
ratio from 25% (i.e., a demand response event lasts 25% of
the entire operation duration) to 100%. As can be seen in
Fig. 5(a), Demand-Response achieves reduced per job average
energy consumption compared with the Non-Demand-Response
benchmark. The energy saving is more pronounced as the
demand response events ratio increases. Demand-Response
incurs only a moderate increase in the per job average average
execution time compared with that of the performance-mode.
Since Demand-Response reduces the energy consumption
during the critical demand response periods, the increase in
application execution time is understandable.

In the rest of the section, we present an experiment to show
the effectiveness of the demand-response model with both

 50

 55

 60

 65

 70

25 50 75 100

En
er

gy
 C

on
su

m
pt

io
n

(K
J)

Demand Response Events Ratio (%)

Demand-Response
Non-Demand-Response

(a) Job Energy Consumption

 0
 20
 40
 60
 80

 100
 120
 140

25 50 75 100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Demand Response Events Ratio (%)

Demand-Response
Non-Demand-Response

(b) Job Execution Time

Fig. 5. Benchmark comparison with power capping.

power-capping and node-scaling capabilities. We compare the
following two benchmarks:
• Demand-Response-Scale, which determines optimal power-

capping value and node allocation that reduces EtS. The
benchmark solves (7) to determine the optimal resource
allocation during the demand response period. The benchmark
allocates all available nodes and chooses the maximum power-
capping limit on all nodes during the normal operation time.
• Non-Demand-Response-Scale, which always chooses the

maximum power-capping limit to ensure the best application
performance. It also allocates the maximum number of nodes
to the job. Note that, this allocation policy is also chosen in
the literature as baseline case [21].

We collected the execution time and energy consumption
data from [43] for the following two HPC applications: AMR
(an application for adaptive mesh refinement simulations) and
LULESH (a shock hydrodynamic modeling application for
unstructured meshes). The applications were executed on 4,
8, 12, and 16 nodes. The power-capping values were set to
be between 31 W and 55 W with 3 W intervals. We collected
the measurements from [43] and used the prediction model in
Section IV to predict the application characteristics (i.e., EtS)
for unknown node numbers and power-capping values. We used
the SDSC SP2 trace from the parallel workload archive [40]
for other job-related information (e.g., job start time, job wait
time).

Fig. 6 compares the results. Fig. 6(a) shows the effect of

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

En
er

gy
-to

-s
ol

ut
io

n
(K

J)

Job Malleability (%)

Demand-Response-Scale
Non-Demand-Response-Scale

(a) Lulesh

 90

 100

 110

 120

 130

 140

 150

 10 20 30 40 50 60 70 80 90 100
En

er
gy

-to
-s

ol
ut

io
n

(K
J)

Job Malleability (%)

Demand-Response-Scale
Non-Demand-Response-Scale

(b) AMR

Fig. 6. Benchmark comparison with power capping and node scaling.

running the jobs using the power and performance data of
the Lulesh application. Fig. 6(b) shows the effect of using the
power and performance data of AMR application. As evident
from the figures, the Demand-Response-Scale benchmark
always achieves smaller EtS than the Non-Demand-Response-
Scale benchmark. This is because Demand-Response-Scale
considers optimization of energy consumption during the
demand response event through both power capping and node
scaling, while Non-Demand-Response-Scale does not consider
such optimization. In the figures, job malleability denotes the
percentage of jobs that are allowed to change the job size. We
change the job malleability from 10% (in which case, only
10% of the jobs can be distributed on an optimal number of
nodes) to 100%. As expected, with higher job malleability,
more jobs can be flexible in choosing the job size for optimized
performance, increasing the opportunity to reduce the energy
consumption with our proposed algorithm.

VI. CONCLUSIONS

In this paper, we study HPC system demand response par-
ticipation and propose an emergency demand-response model
that leverages power-capping and node-scaling capabilities. We
present power, performance, and energy prediction models
for HPC applications with unknown power-capping values
and job sizes. We validate our prediction models using real-
life measurement of application characteristics (including both
power and execution time) and compare our models with

approaches in literature. We propose an HPC emergency
demand-response model by selecting optimal power limit and
job size. Using real-life measurements and trace-based data,
we examine the effectiveness of our proposed approach and
compare it with existing approaches. Our model can effectively
reduce the HPC system’s energy consumption during critical
demand response periods and by doing so enable emergency
demand response participation from HPC systems.

ACKNOWLEDGMENTS

This material is based upon work supported by an NSF grant
CNS-1563883, and by the U.S. Department of Energy Office
of Science, under contract DE-AC02-06CH11357.

REFERENCES

[1] K. Managan, “Demand response: A market overview,” 2014.
[2] EnerNOC, “IEA workshop: Demand response,” https://www.iea.org/

media/workshops/2014/esapworkshopii/Jeff Renaud.pdf, 2014.
[3] D. G. Holmberg, S. T. Bushby, and D. B. Hardin, “Facility smart grid

interface and a demand response conceptual model,” NIST, Tech. Rep.
NIST Technical Note 1832, 2014.

[4] Federal Energy Regulatory Commission, “Assessment of demand re-
sponse and advanced metering,” https://www.ferc.gov/legal/staff-reports/
2016/DR-AM-Report2016.pdf, 2016.

[5] P. Bertoldi, P. Zancanella, and B. Boza-Kiss, “Demand response status in
EU member states,” JRC Science for Policy Report, European Comission,
2016.

[6] S. Zhou, Z. Shu, Y. Gao, H. B. Gooi, S. Chen, and K. Tan, “Demand
response program in Singapore’s wholesale electricity market,” Electric
Power Systems Research, vol. 142, pp. 279–289, 2017.

[7] A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad, “Opportunities and
challenges for data center demand response,” in IGCC, 2014.

[8] E. Bilgin, M. C. Caramanis, I. C. Paschalidis, and C. G. Cassandras,
“Provision of regulation service by smart buildings,” IEEE Transactions
on Smart Grid, vol. 7, no. 3, pp. 1683–1693, 2016.

[9] A. Geist and D. A. Reed, “A survey of high-performance computing
scaling challenges,” The International Journal of High Performance
Computing Applications, vol. 31, no. 1, pp. 104–113, 2017.

[10] Intel Corporation, “Intel 64 and IA-32 architectures software developers
manual,” Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C, 2014.

[11] P. G. Howard, “Six-core AMD Opteron processor Istanbul,” white paper,
Microway Inc, 2009.

[12] Nvidia Corporation, “NVML API reference manual,” https://docs.nvidia.
com/deploy/pdf/NVML API Reference Guide.pdf, 2015.

[13] C. Sahin, F. Cayci, J. Clause, F. Kiamilev, L. Pollock, and K. Win-
bladh, “Towards power reduction through improved software design,” in
Energytech, 2012.

[14] K. Tang, D. Tiwari, S. Gupta, P. Huang, Q. Lu, C. Engelmann, and
X. He, “Power-capping aware checkpointing: On the interplay among
power-capping, temperature, reliability, performance, and energy,” in
DSN, 2016.

[15] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “The HPC Challenge (HPCC)
benchmark suite,” in SC, 2006.

[16] PJM Interconnection, “Demand response strategy,” http:
//www.pjm.com/∼/media/library/reports-notices/demand-response/
20170628-pjm-demand-response-strategy.ashx, 2017.

[17] Q. GAO, “Investigation of power capping techniques for better computing
energy efficiency,” Ph.D. dissertation, Politecnico di Milano, 2014.

[18] B. Rountree, D. H. Ahn, B. R. De Supinski, D. K. Lowenthal, and
M. Schulz, “Beyond DVFS: A first look at performance under a hardware-
enforced power bound,” in IPDPSW, 2012.

[19] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. De Supin-
ski, “Exploring hardware overprovisioning in power-constrained, high
performance computing,” in SC, 2013.

[20] Y. Liu, G. Cox, Q. Deng, S. C. Draper, and R. Bianchini, “FastCap: An
efficient and fair algorithm for power capping in many-core systems,” in
ISPASS, 2016.

[21] O. Sarood, A. Langer, L. Kalé, B. Rountree, and B. De Supinski,
“Optimizing power allocation to CPU and memory subsystems in
overprovisioned HPC systems,” in CLUSTER, 2013.

[22] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing throughput
of overprovisioned HPC data centers under a strict power budget,” in
SC, 2014.

[23] K. Ahmed, J. Liu, and X. Wu, “An energy efficient demand-response
model for high performance computing systems,” in 2017 IEEE 25th
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2017,
pp. 175–186.

[24] G. Hager, J. Treibig, J. Habich, and G. Wellein, “Exploring performance
and power properties of modern multi-core chips via simple machine
models,” Concurrency and Computation: Practice and Experience,
vol. 28, no. 2, pp. 189–210, 2016.

[25] H. Shoukourian, T. Wilde, A. Auweter, and A. Bode, “Predicting
the energy and power consumption of strong and weak scaling HPC
applications,” Supercomputing frontiers and innovations, vol. 1, no. 2,
pp. 20–41, 2014.

[26] H. Shoukourian, T. Wilde, A. Auweter, A. Bode, and D. Tafani,
“Predicting energy consumption relevant indicators of strong scaling
HPC applications for different compute resource configurations,” in
Proceedings of the Symposium on High Performance Computing. Society
for Computer Simulation International, 2015, pp. 115–126.

[27] K. Yoshii, “Python script collection for COOLR,” https://github.com/
coolr-hpc/pycoolr, 2015.

[28] Oak Ridge National Laboratory, Argonne National Laboratory, Lawrence
Livermore National Laboratory, “CORAL benchmark codes,” https://asc.
llnl.gov/CORAL-benchmarks/, 2014.

[29] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The NAS parallel benchmarks summary and preliminary
results,” in Supercomputing, 1991.

[30] P.-F. Lavallée, G. C. de Verdiere, P. Wautelet, D. Lecas, and J.-M. Dupays,
“Porting and optimizing HYDRO to new platforms and programming
paradigms-lessons learnt,” Technical report, PRACE, 2012.

[31] T. Arber et al., “Epoch: Extendable pic open collaboration,” 2014.
[32] N. Santhi, S. Eidenzenz, and J. Liu, “The Simian concept: Parallel

discrete event simulation with interpreted languages,” in Proceedings
of the 2015 Winter Simulation Conference, L. Yilmaz, W. K. V. Chan,
I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, Eds., 2015.

[33] K. Ahmed, J. Liu, A.-H. Badawy, and S. Eidenbenz, “A brief history of
hpc simulation and future challenges,” in Simulation Conference (WSC),
2017 Winter. IEEE, 2017, pp. 419–430.

[34] G. Chapuis, D. Nicholaeff, S. Eidenbenz, and R. S. Pavel, “Predicting
performance of smoothed particle hydrodynamics codes at large scales,”
in WSC, 2016.

[35] K. Ahmed, M. Obaida, J. Liu, S. Eidenbenz, N. Santhi, and G. Chapuis,
“An integrated interconnection network model for large-scale performance
prediction,” in Proceedings of the 2016 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation. ACM, 2016, pp. 177–187.

[36] K. Ahmed, J. Liu, S. Eidenbenz, and J. Zerr, “Scalable interconnection
network models for rapid performance prediction of HPC applications,”
in 2016 IEEE 18th International Conference on High Performance
Computing and Communications (HPCC), Dec 2016, pp. 1069–1078.

[37] Y. Georgiou, D. Glesser, K. Rzadca, and D. Trystram, “A scheduler-level
incentive mechanism for energy efficiency in HPC,” in CCGrid, 2015.

[38] F. Liu and J. B. Weissman, “Elastic job bundling: An adaptive resource
request strategy for large-scale parallel applications,” in SC, 2015.

[39] G. Lawson, V. Sundriyal, M. Sosonkina, and Y. Shen, “Runtime power
limiting of parallel applications on Intel Xeon Phi processors,” in
Proceedings of the 4th International Workshop on Energy Efficient
Supercomputing, 2016.

[40] D. Feitelson et al., “Parallel workloads archive,” http://www.cs.huji.ac.il/
labs/parallel/workload/, 2007.

[41] K. Deng, J. Song, K. Ren, and A. Iosup, “Exploring portfolio scheduling
for long-term execution of scientific workloads in IaaS clouds,” in SC,
2013.

[42] K. Kianfar, G. Moslehi, and R. Yahyapour, “A novel metaheuristic
algorithm and utility function for QoS based scheduling in user-centric
grid systems,” The Journal of Supercomputing, 2015.

[43] A. Langer, H. Dokania, L. V. Kalé, and U. S. Palekar, “Analyzing energy-
time tradeoff in power overprovisioned HPC data centers,” in IPDPSW,
2015.

